
Monads à la Mode
Cameron Swords Daniel P. Friedman

November 12, 2012

1 Introduction

The purpose of this article is to provide a concise introduction

to monads for anyone who has an understanding of Scheme

and simple types. It provides a motivation for using monads, a

frank discussion of the theoretical and implementation aspects

of monads, and a usage guide.

2 Motivation

Monads are an abstraction introduced by Eugenio Moggi

[Moggi, 1989] as an attempt to reconcile the composition of

unique extensions to the simply-typed λ-calculus (herein re-

ferred to as the λ-calculus) that would otherwise require mix-

ing effectful operators. To provide a better understanding, we

first consider two extensions to the λ-calculus and describe the

problems in combining them.

2.1 On Termination

Before we begin, it is important to briefly talk about the λ-

calculus in the context of termination. In short, the λ-calculus

is strongly normalizing and thus non-termination is impossible

as a general rule.

2.2 Continuation-Passing Style

Suppose that we would like to implement call/cc in the pure

(side-effect free) λ-calculus. To achieve this, we first explicitly

expose continuations in our programs by converting each term

in our language into continuation-passing style.

Continuation-passing style is a set of transformations to

the λ-calculus that provides access to continuations. Figure 1

presents rules for translating the λ-calculus into continuation-

passing style. The transformation works by simply walking

the grammar, converting each expression on the left into the

corresponding expression on the right and then recurring.

After the transformation is performed on a λ-expression,

continuations are explicitly exposed in the language. Adding

features such as call/cc, let/cc, throw, and abort are now pos-

sible (call/cc is included in Figure 1 and the rest are left as an

exercise for the reader); before this transformation, a language

implementer would have to provide such functions without ex-

plicitly exposing continuations to the user—similar to how im-

plementations of Scheme provide call/cc as an system-level

feature.

2.3 Store-Passing Style

Suppose that instead of access to continuations, we would like

to add a pair of operators, ref and deref, to our language. Here,

ref places an expression into memory and returns a reference

to the stored value and deref looks up a reference and returns

the relevant value. To do this, we must expose some model of

memory, introducing a store into the λ-calculus. This yields

store-passing style.

Store-passing style is similar to continuation-passing style

in that each expression needs access to a store. Figure 2

presents rules for this conversion—the store is passed through

each expression, providing access when necessary. Using this

style, we may safely encode both ref and deref without side

effects. (This encoding assumes the operators let, car, cdr,

cons, reverse, and length, but these are trivially implemented.)

This encoding of ref and deref works by first handing the

store to the incoming expression (in case the expression needs

to operate on it). It then retrieves both the (possibly) modified

store and evaluated expression. Then, in the case of ref, a new

reference is “allocated” and added to the store and the pair of

this new store and the new reference is returned. In the case of

deref, the reference is looked up in the store and the resulting

value is returned.

Like call/cc presented above, it is possible to implement

ref and deref as primitives of the language, compiled directly

(which is the approach that most implementations of Scheme

take). However, in languages that disallow side effects (such

as Haskell), reproducing such operators must be done through

some form of store-passing style.

2.4 Reconciling Styles

There are a great many extensions similar to the two pre-

sented here. (People seem to enjoy extending the λ-calculus—

mathematicians enjoy it because the λ-calculus is well under-

stood, formalized, and has strong ties to logic and developers

enjoy it because it’s easy to implement.) These extensions are

varied and nuanced, but each adds a useful and unique feature

to the original language.

Clearly, performing each of these transformations on the λ-

calculus is rather mechanical—but what if we wish to perform

both? Is it possible? Well, for these two, it might be, but the

composition certainly violates the semantics of each; either

each continuation mush deal with stores or each store must

deal with continuations, and what should become of a store

when a continuation is invoked?

This led to the sad state of affairs circa 1989: there were

multiple extensions to the λ-calculus but none were compos-

able. And yet, if we consider the case-by-case transformation

of the pure lines (symbols, λs, and application), each looks

incredibly similar in style.

In 1989, Moggi came to this realization—he demonstrated

that each was analogous to the mathematic notion of a strong

monad set forth by Anders Kock [Kock, 1972]. Moggi charac-

1

CSCI-C311 Principles of Programming Languages November 12, 2012

terized additions to the λ-calculus as either a pure translation

(such as in the variable case), composition (function passing

and composition), or one of these special cases that imple-

ments an added feature. He demonstrated that, if it were possi-

ble to decompose any feature’s transformation into these three

disjoint sets (translation, composition, and special features), it

is possible to generalize these pure and compositional oper-

ations (called η and * respectively) and deal with the special

features separately.

This generalization offered up, in many ways, modular lan-

guage semantics. It allowed for using both continuations and

stores in the language, so long as they were not mixed. Not

long after, this was heralded at the programming level by

Philip Wadler [Wadler, 1992], yielding monads.

3 Monads

Monads are the realized implementation of Moggi’s abstrac-

tion. They offer, in Haskell, a way to use side effects, continu-

ations, and other such impure operations in a purely functional,

fully encapsulated fashion. Monads give us all of the dirty, ef-

fectful operations we’d like in a safe, functional world.

Monads rely on two main operators: η and *. However,

before we jump into the syntax and usage of these operators,

we will explore the types they use. Understanding these types

will do more for your understanding of monads than any single

other thing (including using them).

3.1 Category Theory

There is a long-running joke that to use ML, you must first

fully understand type theory, and to use Haskell, you must first

fully understand type theory and category theory. The latter

comes from Haskell’s eschewing effectful operations in favor

of monads. This paper has neither the scope nor space to ex-

plain all of category theory. Instead, a few diagrams serve to

explain enough to facilitate a discussion of the types of mon-

ads (in the study of programming languages, category theory

x (λ (k) (k x))

(λ (x) body) (λ (k)

(k (λ (x)

(λ (k) (body k)))))

(rator rand) (λ (k)

(rator (λ (p)

(rand (λ (a)

((p a) k))))))

(call/cc rand) (λ (k)

(rand (λ (f)

((f (λ (a)

(λ (k^)

(k a))))

k))))

Figure 1: The translation of the pure λ-calculus extended with

call/cc using continuation-passing style [Danvy and Filinski, 1992].

x (λ (s) `(,x.,s))

(λ (x) body) (λ (s)

`(,(λ (x) (λ (s) (body s))).,s))

(rator rand) (λ (s)

(let-pair ((p . s^) (rator s))

(let-pair ((a . s^^) (rand s^))

((p a) s^^))))

(ref rand) (λ (s)

(let-pair ((v . s^) (rand s))

(let ((loc (length s^)))

`(,loc.,(cons v s^))))))

(deref rand) (λ (s)

(let-pair ((@ . s^) (rand s))

`(,(list-ref (reverse s^) @). ,s^))))

Figure 2: The translation of the pure λ-calculus into store-passing

style. A definition of let-pair is given in Figure 21.

int bool string

idint

succ

even?

odd?

idbool

not

tostring

idstring

not ◦ even?

Figure 3: Types as a simple category theory diagram.

is almost exclusively used for types).

Consider, first, the diagram in Figure 3. It is a diagram of

types and functions between them, allowing movement from

one type to another. Here ◦ is the mathematical operator for

function composition, where (g ◦ f) (x) may be written in

Scheme as (g (f x)).

In programs, terms have types. Indeed, even? has type

int → bool. Thus the diagram does a lot toward specifying

a language’s semantics without providing code. And anything

in this diagram must be composable—hence we see that even?

may be composed with not to yield a bool. This is an example

of diagram chasing, a method of mathematical proof where the

proof is given by demonstrating a diagram showing that, given

a specific starting point, one may follow a path to the desired

end point. (This method is analogous to solving a system of

equations, but is often easier to read.)

This leads us to our next diagram, an abstract diagram con-

cerned with typing monads. Recall that we are using a pure

language—a language with no infinite loops, no access to con-

tinuations, and no assignments. The language lacks call/cc,

ref, deref, or any other impure operators.

Instead, the desirable operators, ref and deref, are encap-

sulated in the State monad while call/cc is encapsulated in

the Continuation monad. The diagram in Figure 4 deals with

the types and type transformations of a single, generic monad

through η and *, two monadic operators. For now, simply re-

member that η provides a mechanism to move from the world

of standard expressions into the world of monads and * pro-

2

CSCI-C311 Principles of Programming Languages November 12, 2012

a b c

M a M b M c

monadic
pure

ida

f

η
η ◦ f

idb

g

η
η ◦ g

idc

η

(η ◦ f)∗ (η ◦ g)∗

Figure 4: A category diagram demonstrating monadic composition.

vides a mechanism to use pure functions in the monadic world.

This diagram describes how η and * work. It should be

clear that η takes some argument (like a) and returns an ex-

pression that inhabits the type M a, which is the monadic

form of a. And, perhaps less clear, * provides a mechanism

for performing composition—for taking functions from above

the monadic line in the figure and using them below it.

3.2 Types

With Figure 4 in mind, we now qualify what it means to be

of type M a. If an expression, e, has type a, we say that the

expression e evaluates to an a—an int or a bool or some other

base type. If, however, e has type M a we say that e may

do some work and then produce an a; indeed, both the store-

passing and continuation-passing styles presented earlier took

some data, potentially did some work (updating the store or

modifying the continuation) and continued with the original

expression’s computation.

It should be clear, now, that η has type a → M a; η simply

takes an a and returns its monadic equivalent, yielding M a.

The type of * is similarly straightforward; it takes a function

of the form a → M b and some M a and yields an M b. We

write this as (a→ M b)→ M a→ M b.

It is worth describing how to build functions of type a →

M b. In Figure 4, f has type a → b. If we compose this with

η, taking the result of f and feeding it through η, then we can

construct the function that expects an a and yields an M b.

It may seem alarming that * will take a function of type

a → M b and an M a and produce an M b, but keep in mind

that the monad implementer knows exactly how to extract an

a from an M a and will write * as to perform this operation.

Thus the user need never be concerned with how this process

occurs.

3.3 Three Laws

Now that we have described how these monadic types interact,

we can examine the properties of monads that must hold—they

ensure that converting a, b, and c into M a, M b, and M c

maintains the original behavior. These laws are the responsi-

bility of the monad implementer, and must be ensured when

writing new monads.

1. η∗ = id

This provides the interesting property that, if we attempt

to move η into the monad (via *), we simply produce the

identity function.

2. f ∗ ◦ η = f

This provides the assurance that the two sides of any

triangle in Figure 4 produce the same result as the hy-

potenuse. That is, (ηb ◦ f)∗ ◦ ηa = ηb ◦ f .

3. (g∗
M
◦ f

M
)∗ = g∗

M
◦ f ∗

M

This rule simply provides a mechanism for composing

functions in the monad (fM and gM are functions that op-

erate on and produce monadic values). It ensures that

(η ◦ g)∗ ◦ (η ◦ f)∗ has, as expected, type M a → M c (by

diagram chasing in Figure 4). Thus composition inside of

M works the same as outside of M.

We have provided no mechanism for escaping from a

monad. This helps reinforce the intended usage of monads:

life in a pure world most of the time and, when it is necessary

to escape into an effectful world, the entire computation must

move into it. If any fi in a series of functions, f1 ◦ ...◦ fn, every

single f must deal with the monad—we must stay below the

monadic line.

4 Implementation

Given this rudimentary description of the formal definition of

monads and their types, we now present several monads to

help understand their usage and interactions. First, however,

we introduce a new operator, bind, which serves a purpose

akin to * with the single caveat that bind takes its arguments

in reverse order (this is purely for the sake of readability).

That said, we need only implement η and bind. In Haskell,

η is called return (which may be syntactically more pleasing

when using the do syntax described below). Thus return has

type a → M a and bind has type M a → (a → M b) →

M b. The rest of this section presents implementations of the

identity, maybe, writer, and state monads.

4.1 Identity Monad

The identity monad provides a simple introduction to imple-

menting monads without dealing with the complexity of fur-

ther details. In Figure 5, we define the two functions required

for monad usage: return and bind.

We define this as the identity monad—here, if something

has type M a, we write it as Id a. And we define Id a = a

itself (because it is the identity). Thus, to write return (which

also serves as η for the identity monad), we take something

of type a and returns something of type Id a—thus return is

exactly the identity function. Similarly, bind takes some Id a

and some f of type a→ Id b. Since we have defined Id a = a

and Id b = b, we can simply apply f to the argument ma (of

3

CSCI-C311 Principles of Programming Languages November 12, 2012

(define return-id (λ (a) a))

(define bind-id (λ (ma f) (f ma)))

Figure 5: Definitions of return and bind for the identity

monad.

type Id a = a) and produce a b = Id b. (Here and below, bind

will been written without currying.)

Now, for an example usage of the identity monad, we can

write a simple function (such as addition) that takes two int

arguments and return Id int. See Figure 6 for this implemen-

tation. It takes two arguments, both of type int, performs the

addition, returns the result, and calls bind with a call to return

to produce a value in Id b.

(define plus-id

(λ (a b)

(bind-id

(return-id (+ a b))

(λ (x) (return-id x))))

Figure 6: Defining plus with the identity monad.

This provides the basic implementation of a simple monad

and a single example of its usage. We now move on to defin-

ing more useful monads to demonstrate how this concept can

represent possibly failing computations and stateful computa-

tions.

4.2 Maybe Monad

The maybe monad provides a way to return potential

computations—to describe if a computation has returned noth-

ing. For a motivating example, imagine writing divide—

what happens when the second argument is a 0? The maybe

monad provides a concise, safe solution by returning a tagged

answer—either (Nothing), meaning the computation failed to

return anything, or (Just a), where a is the answer. Consider,

now, the definitions of return and bind in Figure 7.

To achieve further encapsulation, we also provide fail, a

thunk that, when invoked, will fail with (Nothing). It should

be invoked instead of using (Nothing) to maintain represen-

tation independence. Given these definitions, we can define

division (as in Figure 8) in such a way that, if the division is

impossible (in the case of a 0), we can simply return (Nothing).

divide-maybe has a result type of Maybe rat. When attempting

to divide by 0, the computation fails, but otherwise operates

normally.

Now, what if we would like to sequence an algebraic expres-

sion such as (/ (+ 7 8) 4)? We must coerce this expression

into the maybe monad. Figure 9 presents an encoding, using

the division function in Figure 8.

(define return-maybe

(λ (a)

`(Just ,a)))

(define bind-maybe

(λ (ma f)

(cond

[(eq? (car ma) 'Just) (f (cadr ma))]

[(eq? (car ma) 'Nothing) '(Nothing)])))

(define fail

(λ ()

'(Nothing)))

Figure 7: Definitions of return and bind for the maybe monad.

(define divide-maybe

(λ (a b)

(if (zero? b)

(fail)

(return-maybe (/ a b)))))

Figure 8: Defining division with the maybe monad.

(bind-maybe

(return-maybe (+ 7 8))

(λ (x)

(bind-maybe

(divide-maybe x 4)

(λ (x^)

(return-maybe x^)))))

Figure 9: Encoding an algebraic expression in the maybe

monad.

Here, (return-maybe (+ 7 8)) is of type Maybe int and bind

takes this and a function int → Maybe rat, returning a value

of type Maybe rat. The body of the inner-most lambda sim-

ply hands this back, yielding the answer (Just 15/4). Further-

more, this program provides an explicit sequencing of opera-

tions in the monad. Indeed, all monads require such explicit

sequencing. This led Haskell to introduce the syntactic form

do.

4.3 Do Syntax

Since everything in writing monads must be sequenced, it

makes sense to introduce a piece of syntax that lets us spec-

ify the sequence easily—somewhat like let*. However, our

syntax implicitly calls bind for us, meaning we only have

to specify calls to return. We accomplish this with a small

syntax-rules macro as presented in Figure 10.

This Scheme macro provides a method for building expres-

sions such as in Figure 9. We can now rewrite that example

using the macro presented here, yielding Figure 11, a concise

implementation of the same program.

4

CSCI-C311 Principles of Programming Languages November 12, 2012

(define-syntax do

(syntax-rules (<-)

((_ bind e) e)

((_ bind (v <- e0) e e* ...)

(bind e0 (λ (v) (do bind e e* ...))))

((_ bind e0 e e* ...)

(bind e0 (λ (_) (do bind e e* ...))))))

Figure 10: An implementation of the do macro.

(do bind-maybe

(x <- (return-maybe (+ 7 8)))

(x^ <- (divide-maybe x 4))

(return-maybe x^))

Figure 11: An encoding of Figure 9 using do notation. The

bind to use is the first argument to do.

This example provides the same functionality as in our first

example of using bind-maybe. Here, x is bound to the result

of placing (+ 7 8) inside of the maybe monad, then a call to

divide-maybe with x produces x^. Finally, x^ is returned (still

inside the monad), completing the program and resulting in

(Just 15/4). The simplicity in syntax is far easier on the eyes

(as opposed to the almost continuation-passing style used in

Figure 9), providing a sequence of operations while relieving

the explicit use of anonymous λs. Indeed, the expansion of

Figure 11 is identical to the code presented in Figure 9 when

the printing of gensym variables is suppressed.

The syntax of do is hopefully clearer now. In short, it works

as follows: anything on the right of an arrow (<-) must evaluate

to something of the type M a, where M matches the monad

provided as the binding function in the first argument to do.

This syntax builds a function whose argument is bound (via

a λ) to the variable that appears on the left side of the <-. The

macro then recursively expands the rest of the do statement

(which ultimately returns some M b) and embeds it as the body

of the λ, yielding a function of type a → M b. Thus we have

an M a and a function a → M b, meaning that we can simply

make a call to bind. This allows us to tersely express complex

monadic terms.

4.4 Writer Monad

With this do syntax in mind, we now move on to provide a

definition of the writer monad. The writer monad provides a

system for carrying around a piece of data (in this case, a list)

and from time to time writing data to it. However, the data

already written may never be seen (only appended to). The

implementation of the writer monad is presented in Figure 12.

Included in this definition is tell-writer, a function that takes

some message and writes it to the writer’s buffer.

A nice application of this monad is for producing a log for

an operation. Consider a program that walks a list of numbers,

(define return-writer

(λ (a)

`(,a.())))

(define bind-writer

(λ (ma f)

(let ((mb (f (car ma))))

`(,(car mb) .

,(append (cdr ma) (cdr mb))))))

(define tell-writer

(λ (to-write)

`(_.(,to-write))))

Figure 12: A definition of the writer monad.

producing the reciprocal of each. If it encounters a 0, however,

it discards the 0 and appends an error to the log (via the writer

monad). See the definition of this function in Figure 13.

(define reciprocals

(λ (l)

(cond

[(null? l) (return-writer '())]

[(zero? (car l))

(bind-writer

(tell-writer "Saw a 0")

(λ (_)

(reciprocals (cdr l))))]

[else

(bind-writer

(reciprocals (cdr l))

(λ (d)

(return-writer

(cons (/ 1 (car l)) d))))])))

Figure 13: An implementation of reciprocals using the writer

monad.

Here we can see how the writer monad is used and how the

list of writes is grown—bind in the writer monad takes a pair

of a value to return and something to add (via append) to the list

of writes. In the case of zero, we wish to return the natural re-

cursion and call tell-writer, writing some information. Note

that, because we do not care what tell-writer returns, we use

a λ with an underscore argument and never use it.

We would like to call attention to the function call in the

zero? case. Because reciprocals always returns something

of type Writer a, wrapping a call to return-writer around it

would double-layer the monad itself, leading to incorrect (and

strange) results. Thus, we omit a call to return and leave the

recursive call in its position. Contrast this with the call to cons

wrapped in a call to return-writer in the else case—here, we

need to return some value other than the direct recursive call,

and so we must wrap our pure list in return.

Here we again demonstrate how our do operator may

compress the code. Figure 14 presents this rewriting of

reciprocals, discarding direct calls to bind. This allows us

to remove explicit anonymous lambdas from our implementa-

tion, but it is worth noting that this syntax does little more than

5

CSCI-C311 Principles of Programming Languages November 12, 2012

move the placement (in text) of the bounded variable from the

lambda argument to the left of the <-.

(define reciprocals

(λ (l)

(cond

[(null? l) (return-writer '())]

[(zero? (car l))

(do bind-writer

(tell-writer "Saw a 0")

(reciprocals (cdr l)))]

[else

(do bind-writer

(d <- (reciprocals (cdr l)))

(return-writer

(cons (/ 1 (car l)) d)))])))

Figure 14: An implementation of reciprocals using the writer

monad.

The other piece of syntax introduced in Figure 14 is the

arrow-free do clause. In some cases, we wish to call bind with

an argument whose result is unimportant. One option in this

case would be to write (_ <- expression), using _ to denote a

value that is never used. Instead, we have a third line in the

do macro, providing a mechanism to completely avoid this un-

necessary binding.

4.5 State Monad

The last monad we consider is the state monad—a monad that

allows us to carry a state (that directly reflects the store-passing

style presented earlier). As with the two monads we have al-

ready seen, we need only provide implementations of return

and bind to use it.

(define return-state

(λ (a)

(λ (s)

`(,a.,s))))

(define bind-state

(λ (ma f)

(λ (s)

(let ((vs (ma s)))

(let ((v (car vs))

(s^ (cdr vs)))

((f v) s^))))))

(define get-state

(λ (s)

`(,s.,s)))

(define put-state

(λ (new-s)

(λ (s)

`(_.,new-s))))

Figure 15: A definition of the state monad.

Indeed, even the implementation of this monad looks like

store-passing style—return resembles the variable case and

bind is the generic abstraction of doing something with the

store and returning the new one. Just like with store-passing

style, the store, or state, gets passed into each expression, al-

tered however necessary. When using this monad, it is impor-

tant to remember that each expression is waiting to be passed

the current state. Indeed, something of type State s a takes the

state of type s, potentially changes the state, and then returns

the expression’s value paired with the new state.

Using this concept of state, we can reproduce store-passing

style. Any State s a is a function expecting a state, and so

any call to a function using the state monad must invoke the

result of the function call with a starting state to retrieve the

computation’s result (as in bind).

Also notice the implementations of get-state and put-state.

The former is an abstraction for retrieving the state being

passed around as a pure value and the latter is a mechanism for

passing a modified state back in. As with the writer monads

tell-writer, these abstractions further encapsulate the internal

representation of states.

To demonstrate these features, we implement a function to

walk a list and determine if it has even length. We can accom-

plish this with an accumulator by passing an additional argu-

ment (initially #t) and inverting it once for every element we

see. If, at the end, we have seen an even number of elements,

we have inverted it an even number of times and produce a #t

(or a #f if we have seen an odd number of elements and thus

inverted it an odd number of times). Figure 16 provides an

implementation.

(define even-length?

(λ (l s)

(cond

[(null? l) s]

[else

(even-length? (cdr l) (not s))])))

Figure 16: A definition of even-length? using an accumulator.

However, if we have access to a state—as with the state

monad—we need not pass this accumulator explicitly. Be-

cause we can change the value of the state passed around,

we can implement the function in Figure 16 with minimal

adjustment—as in Figure 17.

(define even-length?

(λ (l)

(cond

[(null? l) (return-state '_)]

[else

(do bind-state

(s <- get-state)

(put-state (not s))

(even-length? (cdr l)))])))

Figure 17: A definition of even-length? using the state monad.

This example has two interesting properties, each of which

6

CSCI-C311 Principles of Programming Languages November 12, 2012

helps better describe the usage of monads. The first interest-

ing property deals more directly with the state monad itself.

We can modify the state, as accomplished first retrieving the

state with get-state and replacing it by the modified state with

put-state. We provide a function expecting a state (and thus

has type State s a) and, upon receiving the state, hands back

the expected value/state pair with a modified state. In this case,

we use the arrow-free syntax of do when calling put-state as

we are not concerned with the result.

The second interesting property occurs in the base case of

the recursion: we ensure that we return something of type

State s a (where s is bool and a is list), but we do not care

about the value of the computation itself, only the state. Thus

we pass in a dummy variable to return. Consider the trace of a

call to this program (in Figure 18) and keep in mind that any-

thing of type State s a is actually a procedure waiting to be

passed the state.

> ((even-length? '(1 2 3 4)) #t)

|(even-length? (1 2 3 4))

|#<procedure>

|(even-length? (2 3 4))

|#<procedure>

|(even-length? (3 4))

|#<procedure>

|(even-length? (4))

|#<procedure>

|(even-length? ())

|#<procedure>

(() . #t)

Figure 18: A call to monadic even-length?.

To demonstrate a larger program written using the state

monad, consider writing a function that walks a (potentially

deep) list of numbers, removing and counting any even num-

ber it encounters, returning a list of the form (list . count).

Implementing this as two separate passes over the list entails

writing one function to count the even numbers and another

function to remove the even numbers. This solution is pre-

sented in Figure 19.

This, however, leaves something to be desired. Using the

state monad technology, it should be possible to implement it

in a single pass, using the state to count the even numbers seen

and the value to return the list with the even numbers removed.

Using our do syntax, we provide the implementation concisely

in Figure 20.

Here we see the principles and idioms presented through-

out this section of the paper, all applied in a large, recursive

function that yields the correct answer in a single pass over the

data. (Also, note that a call to this program is of the form

((remberevensXcountevens list) O)—we must somehow seed

the state, and so we start it with a 0.)

This example illustrates the real power monads provide. It

would be possible to achieve equally terse results using set!

in Scheme, but we have managed to abandon such effectful

operations while producing the same results.

(define countevens

(λ (l)

(cond

[(null? l) 0]

[(pair? (car l))

(+ (countevens (car l))

(countevens (cdr l)))]

[(or (null? (car l)) (odd? (car l)))

(countevens (cdr l))]

[else (add1 (countevens (cdr l)))])))

(define remberevens

(λ (l)

(cond

[(null? l) '()]

[(pair? (car l))

(cons (remberevens (car l))

(remberevens (cdr l)))]

[(or (null? (car l)) (odd? (car l)))

(cons (car l) (remberevens (cdr l)))]

[else (remberevens (cdr l))])))

(define remberevensXcountevens

(λ (l)

`(,(remberevens l) . ,(countevens l))))

Figure 19: An implementation of remberevensXcountevens us-

ing two passes.

(define remberevensXcountevens

(λ (l)

(cond

[(null? l) (return-state '())]

[(pair? (car l))

(do bind-state

(a <- (remberevensXcountevens (car l)))

(d <- (remberevensXcountevens (cdr l)))

(return-state (cons a d)))]

[(or (null? (car l)) (odd? (car l)))

(do bind-state

(d <- (remberevensXcountevens (cdr l)))

(return-state (cons (car l) d)))]

[else

(do bind-state

(s <- get-state)

(put-state (add1 s))

(remberevensXcountevens (cdr l)))])))

Figure 20: An implementation of remberevensXcountevens us-

ing the state monad.

5 Conclusion

In this paper, we have described the original motivation be-

hind monads, provided a formal look at the types and type

signatures of monads, and studied the implementation of four

different monads, including do syntax and the return and bind

primitives. While this has in no way covered the entirety of

monads and understanding them, it has hopefully provided a

working knowledge of their applications and usage.

While providing a look into monads, we have completely

omitted some, including the exception monad (intended for

exception and error handling), the reader monad (the mirror

of the writer monad, sometimes known as the environment

monad), the continuation monad (which exposes continua-

7

CSCI-C311 Principles of Programming Languages November 12, 2012

tions), and the list monad (which provides non-determinism).

Furthermore, we have entirely omitted the advanced topic

of mixing monads. Mixing monads is subject to the same

problems as mixing continuation-passing and store-passing

styles—you must choose in which order they are composed.

When composing the state monad with the continuation

monad, you must decide which is “nested” in the other—

either continuations get access to the state or the state gets

access to continuations. Thus there are two ways to write the

continuation-state monad that have distinctly different opera-

tional semantics.

5.1 Acknowledgements

We would like to thank Amr Sabry for providing a basis for

much of the type discussion in this paper in CSCI-B522: Pro-

gramming Language Foundations and Kyle Carter for his ini-

tial do macro that has been modified to appear above. We

would also like to thank Zack Owens, Adam Foltzer, Kyle

Carter, and Amr Sabry for all of their feedback on early drafts.

6 References and Further Reading

[Danvy and Filinski, 1992] Danvy, O. and Filinski, A. (1992).

Representing control: a study of the cps transformation.

[Kock, 1972] Kock, A. (1972). Strong functors and monoidal

monads. Archiv der Math, 23:113–120.

[Moggi, 1989] Moggi, E. (1989). Notions of computation and

monads. Information and Computation, 93:55–92.

[Wadler, 1992] Wadler, P. (1992). The essence of functional

programming. In Proceedings of the 19th ACM SIGPLAN-

SIGACT symposium on Principles of programming lan-

guages, POPL ’92, pages 1–14, New York, NY, USA. ACM.

Appendix

(define-syntax let-pair

(syntax-rules ()

[(_ ((a . s) call) body)

(let ((tmp-res call))

(let ((a (car tmp-res))

(s (cdr tmp-res)))

body))]))

Figure 21: A macro definition for let-pair.

8

