Big Types in Little Runtime

Open-World Soundness and Collaborative Blame for Gradual Type Systems

Michael M. Vitousek

Indiana University, USA
{mvitouse,cswords,jsiek }@indiana.edu

Abstract

Gradual typing combines static and dynamic typing in the same
language, offering programmers the error detection and strong
guarantees of static types and the rapid prototyping and flexible
programming idioms of dynamic types. Many gradually typed
languages are implemented by translation into an untyped tar-
get language (e.g., Typed Clojure, TypeScript, Gradualtalk, and
Reticulated Python). For such languages, it is desirable to sup-
port arbitrary interaction between translated code and legacy code
in the untyped language while maintaining the type soundness of
the translated code. In this paper we formalize this goal in the
form of the open-world soundness criterion. We discuss why it is
challenging to achieve open-world soundness using the traditional
proxy-based approach for higher-order casts. We then show how
an alternative, the transient design, satisfies open-world soundness
by presenting a formal semantics for the transient design and prov-
ing that the semantics satisfies open-world soundness. In this paper
we also solve a challenging problem for the transient design: how
to provide blame tracking without proxies. We define a semantics
for blame and prove the Blame Theorem. We also prove that the
Gradual Guarantee holds for this system, ensuring that programs
can be evolved freely between static and dynamic typing. Finally,
we demonstrate that the runtime overhead of the transient approach
is low in the context of Reticulated Python, an implementation of
gradual typing for Python.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory

Keywords gradual typing, type systems, semantics, interoperabil-
ity

1. Introduction

Gradual typing [33, 44] enables the safe interaction of statically
typed and dynamically typed code. In recent years, gradual typing
has been of interest to the research community [2, 3, 28, 30, 37,
39, 41] and to industry developers: numerous new languages have
arrived on the scene with elements of gradual typing, including
Dart [20], Hack [16], and TypeScript [27].

Gradually typed languages use the dynamic type * and a con-
sistency relation on types to govern how statically typed and un-

Cameron Swords

Jeremy G. Siek

typed code interacts: the consistency relation plays the role that
type equality usually does in the type system. Types are consistent
if they are equal up to the presence of *.

Most existing gradually typed languages operate by translating
a surface language program into an underlying target language,
which is then executed. For many gradually-typed systems such as
Typed Racket and TypeScript, the target language is a dynamically
typed programming language, and gradually-typed programs are
expected to seamlessly interact with legacy code in the dynamic
language that has not been translated. In this paper, we present a
formal treatment of this property, which we refer to as open-world
soundness.

Sound gradual typing requires runtime type checks. While most
dynamically typed target languages are “sound” in the sense that
they will not reach stuck configurations or elicit undefined behavior
such as memory corruption, a translated gradually typed language
may be unsound with respect to its type annotations if values of
the wrong type can inhabit variables in statically typed regions of
code. This can cause unexpected and difficult-to-debug uncaught
type errors. Runtime checks can prevent this, and the traditional
way to implement them is to translate the source program into a
target language with explicit casts [33, 44].

Not all gradually typed languages are sound with respect to
their static types. Languages like TypeScript and Hack do not en-
force types at runtime when statically typed and dynamically typed
code interact. In these languages, the translation can simply erase
the types and no responsibility is placed on target-language pro-
grams to supply the translated code with values of the correct type
at runtime. This design allows translated programs to straightfor-
wardly interact with target-language programs. However, interop-
erability is more challenging to achieve for sound gradually typed
languages, where runtime casts are inserted to ensure that values
flowing into statically typed regions of code satisfy their expected
static types. Soundness in these languages is usually shown in a
closed world, where the only programs considered are ones that
originate in the surface language and are translated and then exe-
cuted. Open-world soundness extends soundness to translated pro-
grams that are embedded in arbitrary target-language code.

We discuss open-world soundness in the context of different de-
signs for runtime type enforcement, demonstrating that the tradi-
tional guarded approach to gradual typing fails open-world sound-
ness when the target language is a spartan host (i.e., a language
which lacks native runtime support for gradual typing) and that the
transient design proposed by Vitousek et al. [48] satisfies it.

Moreover, we explore open-world soundness in the context of
the gradual guarantee [36], which states that weakening or remov-
ing type annotations from a program does not introduce new errors.
Languages which support the gradual guarantee allow program-
mers to evolve their code from untyped scripts to precisely typed
programs, and languages that combine open-world soundness and

the gradual guarantee let programmers transition projects from dy-
namic to static at any granularity without needing to change the
untyped sections of their code.

In this paper, we identify the open-world soundness property
and prove, for the first time, that it holds for a calculus. However,
we hypothesize that open-world soundness holds for some exist-
ing gradually-typed languages, including Typed Racket [41, 45],
TS* [39] and StrongScript [31]. These designs support some degree
of open interaction with dynamically typed code in the target lan-
guage without error. Unfortunately, many of these systems achieve
this interaction by significantly limiting which implicit type con-
versions are allowed, violating the gradual guaranteeor example, a
TS* function of the type * — % cannot be passed into a context
that expects a bool — bool function, and therefore the gradual
guarantee does not hold.

Typed Racket is aided by Racket’s built-in contract support.
When functions are exported from Typed Racket into untyped
code, they are wrapped with a contract monitor that ensures that
interactions between typed and untyped code are sound. Racket is
therefore not a spartan host; its features enable Typed Racket to
have open-world soundness with a guarded approach.

Contributions. In this work, we explore the design of open-world
gradual typing with the gradual guarantee as a guiding principle.
Our contributions are:

e We identify and formalize open-world soundness as an impor-
tant property for integrating gradual typing into existing lan-
guages (Section 2.1).

¢ We demonstrate the difficulties of supporting open-world sound-
ness with the guarded design when translating to a language
with limited support for proxies, and show how the transient
approach recovers it (Section 2.2).

e We discuss the challenge of defining blame tracking for tran-
sient casts and present a solution (Section 3).

e We define the first formal semantics for the transient design as
a variant of the gradually typed lambda calculus *,, including
the new blame tracking strategy (Section 4).

We prove that *, satisfies the Blame Theorem (Section 5.1),
Open-World Soundness (Section 5.2), and the Gradual Guaran-
tee (Section 5.3).

We present experimental results showing that the performance
overhead for transient is “usable” a la Takikawa et al. [42]
and avoids the worst-case slowdowns found in Typed Racket
(Section 6).

2. Open-World Soundness and Gradual Typing

In this section, we introduce open-world soundness for gradual
typing, presenting the general idea and then its formalization and
proof technique, and discuss how it benefits users. We then contrast
approaches to runtime verification for gradual typing in the context
of open-world soundness, and show that the guarded design does
not support open-world soundness when the target language of the
translation is a spartan host.

2.1 Open-World Soundness in a Nutshell

Many gradually typed languages [9, 27, 46, 48] translate programs
written in the source language into dynamically typed programs
in the target language. This translation process does not necessar-
ily produce programs that may safely interoperate with untrans-
lated code in the target language without losing the usual type
soundness guarantees of gradual typing. This lack of soundness in-
hibits the implementation and distribution of typed-and-translated
libraries, prevents gradually typed programs from using existing,

target-language libraries, and misses out on much of the utility of
type annotations.

In this work, we propose an additional property, open-world
soundness: if a program is well-typed and translated from a
gradually-typed surface language into an untyped target, it may in-
teroperate with arbitrary untyped code without producing uncaught
type errors. If a translation process fulfills open-world soundness,
then programmers are free to write their programs in the gradually-
typed source language, using untyped third-party libraries and dis-
tributing their own code to untyped clients.

2.1.1 Formalizing Open-World Soundness

To formalize open-world soundness, we must differentiate between
terms based on their origin: terms e that originate from translated
portions of the program are marked ¢, while program contexts
C, which represent target-language code, are marked 4. With this
distinction in place, we define open-world soundness:

Definition (Open World Soundness). Suppose e is a source ex-
pression of type T' that translates to term e of the target language.
The system fulfills open-world soundness if, for any program con-
text C in the target language, either:

o C[e] reduces to v in zero or more steps for some value v, or
e Cle] diverges, or

e Cle] reduces to a runtime cast error, or

o Cle] reduces to a type error while evaluating in C.

This definition has the flavor of type soundness with one funda-
mental difference: instead of prohibiting programs C|e] in the target
language from misbehaving, we ensure that any incorrect behavior
is due to the program context C, which may represent a client pro-
gram interacting with e or the source program e interacting with an
untyped library.

2.1.2 Open-World Soundness Helps Programmers

Open-world soundness goes beyond traditional type safety: pro-
grammers using gradually typed languages that satisfy open-world
soundness can safely write programs that interact with arbitrary
programs in the underlying dynamic language. Moreover, program-
mers may distribute their translated programs as libraries to users
of the underlying language, who will benefit from the improved
error detection without having to use—or even know about—the
gradually typed source language.

Likewise, open-world soundness benefits users who write their
own code with static types to ensure correctness, but nevertheless
wish to take advantage of external libraries written in the target lan-
guage. Open-world soundness guarantees that using such libraries
will not cause the typed code to misbehave or produce errors, even
in the presence of two-way communication between translated code
and the target-language library (e.g. via callbacks).

2.2 Gradual Typing Strategies and Open-World Soundness

‘We now inspect two different approaches to providing runtime type
checking for gradual typing and discuss each in the context of open-
world soundness.

2.2.1 Guarded Inhibits Open-World Soundness

In the guarded semantics, the traditional approach to gradual typ-
ing [23, 33], the programmer annotates part of the program with
types and the compiler translates the entire program into a target
language. During translation, the types are erased and casts are in-
serted at every implicit conversion site. At runtime, these casts en-
sure that values adhere to the specified types, raising runtime errors
when they detect type violations. Consider the following example
and the translation of its invocation:

fun filter (f:int—bool, I:list int)—list int.
if f(head l)
then cons (head) (filter f (taill))
else filter f (taill)

filter (fun _ (x:%)—* . x %2=0) [1,2,3,4]

In guarded, the compiler inserts a cast on the anonymous procedure
argument to filter from * — « to int — bool during translation.

Guarded Call Translation

filter ((fun - (x:%x)—*. x%2=0) :: *—x=-L0(int—bool))
[1,2,3,4]

#—* [2,4]

While casts on first-order values are checked immediately when
evaluated at runtime, casts on functions and objects in guarded
install proxies: in the example above, the cast from x — x to
int — bool installs a wrapper on the original procedure that, when
called, casts the input from int to %, calls the underlying procedure,
and then casts the result from x to bool [18].

Unfortunately, these proxies interfere with open-world sound-
ness on spartan hosts by inhibiting sound module interactions and
sound foreign-function calls.

Guarded inhibits sound module interaction. Without modifying
the target-language runtime to reason about proxied values, trans-
lated programs cannot soundly interact with programs written in
the target language. Guarded dictates that callers, not callees, are
responsible for type safety when interacting with typed code. For
example, consider the following function definition:

isEven 2 fun isEven (n:int)—bool. (n %2)=0

After guarded translation, this program contains no casts; the trans-
lation process proved that the output will always be a bool, and so
the program is provided without additional annotation:

Guarded Translation

isEven = fun isEven n. (n%2)=0

Unfortunately, while the caller is responsible for invoking isEven
with an integer, nothing enforces this responsibility. As a result, a
program in the target language may incorrectly invoke isEven:

Plain Code (Target Language)

isEven(”Hi”)

——* Error in (n % 2) = 0:

n is a string, expected an integer

Under guarded, the callee fails its responsibility and thus the pro-
gram yields an error from the internals of the translated program.
This error would occur in an untyped version of this program, but is
now more difficult to debug: the programmer may incorrectly think
that they can trust their type annotations.

Guarded inhibits foreign function calls. Programs translated
with guarded semantics may also misbehave when using foreign
functions, including built-in functions provided by the language
runtime. For example, consider a program that uses built-in sum
and length functions from the spartan target language, which
both expect a list (and are assumed to be type x — x by the
translation process) and which do not respect or accept proxies.

2 fun avg (1: list float) — float. (sum /) / (length /)

avg =
A

readFile fun readFile (name: x) — x. openAndParse name

main
avg(readFile " arr™)

After guarded translation, the program is:

Guarded Translation
A
avg = funavg [.
((sum (I : list float=-f1%)) /
(length (I : list float=-{2x))) :: x =*3float

readFile 2 fun readFile name. openAndParse name

main
avg ((readFile ”arr”) :: x =%0list float)
——™ Error in sum: | is not a list

This program yields an error complaining that / is not a list: when
the argument / in avg is passed to sum, the argument is cast from
list float to x (because sum is a built-in function assumed to be type
* — *.), wrapping / in a proxy. The built-in sum, however, expects
an unproxied list. When it receives a (structurally different) proxied
value at runtime, it produces an error. Worse, the programmer may
be misled during debugging: avg is typed, so they may assume
readFile (and not the invocation of sum itself) is to blame.

This problem can be further exacerbated by objects and classes.
For example, in Reticulated Python (which compiles to Python, a
spartan host), a list proxy is a subtype of a list (to maintain the be-
havior of the commonly-used isinstance function), causing fur-
ther misbehavior. The proxied list is a subtype of list , which means
it contains a private, internal list structure, and when the CPython
built-in functions operate over a proxied list, they directly manipu-
late this internal value (instead of the proxied list, as intended). The
result is that calls appear to have no effect, and programmers may
be at a loss to explain this behavior.

2.2.2 Transient Semantics Support Open-World Soundness

Recent work by Vitousek et al. [48] introduces an alternative se-
mantics, transient, that eschews proxies in favor of shallow run-
time type checks—lightweight queries that inspect values’ “type
tags” [6]—rather than proxy-building casts. During translation, the
transient design inserts these checks into function bodies (to de-
fensively ensure its inputs have correct type) and at function call
sites (to ensure their results have the expected type).

This type-and-check approach allows transient to elide proxies,
which solves the pointer-identity problems with guarded seman-
tics [48] and recovers open-world soundness.

Transient supports sound module interaction. Under transient,
functions are responsible for checking the types of their arguments,
function calls are responsible for checking the type of return val-
ues, and dereference sites are responsible for checking the type of
dereferenced values. As a result, plain programs written in the tar-
get language (i.e., Python for Reticulated Python, JavaScript for
TypeScript, and Clojure for Typed Clojure) are not responsible for
performing any checks themselves, and may invoke their typed-
and-translated counterparts and rely on checks within the typed
modules to detect and directly report type mismatches to the user.
Consider the transient translation of isEven, which contains a type
check (written n{l (int, isEven, ARG)) to ensure that its input » is
an integer before executing the function’s body:

Transient Translation
isEven = fun isEven n. nd (int, isEven, ARG); (n %2) =0

In the case that # is not an int, the check contains the information
to report the error to the user (in this case, n was an argument in
isEven, as indicated by ARG):

Plain Code (Target Language)

isEven(”Hi”)
—™ Error in isEven:
isEven was called with "Hi”, which is not an int

Under transient semantics, the error correctly indicates that the ar-

gument to isEven was mistyped; the user is now guaranteed that
once they’ve added type annotations to a piece of code, it will not
misbehave.

Transient supports foreign function calls. Eschewing proxies
in transient enables safe interaction with foreign function calls.
Consider the transient translation of the avg- readFile example:

Transient Translation

avg 2 fun avg 1. 1| (list,avg, ARG);
(sum (I : list float=>‘1x)) /
(length (I : list float=-¢2x))

readFile = fun readFile name . openAndParse name

(avg ((readFile “arr”) :: x =%0list float)){ (float, avg, RES)
—*476

Where guarded installed a proxy around the list / before passing
it to sum, the transient cast at the same place are only used to
inform blame. As a result, the unproxied list / is passed to sum,
and it behaves correctly. In lieu of the proxy, the type checks at
the beginning of avg and the call site (written /| (list ,avg,ARG)
and ... | (float,avg,RES)) inspect the top-level type (or type tag) of
each value, ensuring safe interaction and providing the expected
type safety to programmers. Moreover, if a built-in or foreign
function mutates its input in an ill-typed way, these checks will
detect and report the ill-typed value when used.

3. Collaborative Blame

While the transient approach recovers pointer identity and open-
world soundness, it does so by removing proxies. In previous work,
proxies served as the mechanism for tracking and propagating
blame information [18, 45, 50]. The runtime system uses this in-
formation when a runtime type error is encountered to report the
source of the error—not just the location where the error was dis-
covered and the error was raised, but also which implicit conversion
site was violated. This information helps the programmer debug the
issue more efficiently.

Traditionally, blame information is propagated through pro-
grams at runtime by being included in proxies so that when cast
errors occur, the information can be included in errors. Consider
the following example, in which isEven is cast to x — % and then
invoked on a string (all within a gradually typed module):

Guarded Translation

isEven 2 fun isEven n. (n%2)=0

let dyFunc = (isEven :: int—bool =0 x—x)
in dyFunc ("Hi” :: str =115)

When the cast on isEven is applied at runtime, the result is a proxy
around isEven which includes the information that the proxy was
created by a cast with the label /5. When this proxy is applied to
the string "Hi” (which has been casted to), it casts the argument
to int. This cast fails and the resulting error message blames /o,
indicating that the cast int—bool =-‘0x—x is at fault.

Because transient lacks proxies, it is initially unclear that im-
plementing blame tracking is possible in our system. However,
without blame information, the programmer may not have enough
details to properly diagnose errors and, as such, we develop an al-
ternative mechanism to maintain and propagate this information
and report blame errors.

3.1 Runtime Blame Management

We solve this problem by tracking blame information in a global
blame map, updating the relevant blame information at every im-

plicit conversion. We track when values are passed between dif-
ferent static types by statically inserting casts into the program as
in guarded; rather than serving as a type enforement mechanism,
these casts only update the blame map—checks are still the main
mechanism for detecting type errors. When a check fails, this blame
map is used in conjunction with the type information at the failure
site to construct the full error account to the programmer. Further-
more, this construction process provides a blame history, indicat-
ing the conflicting assumptions that different pieces of the program
made to produce this error.

Consider the previous example with isEven, now using the tran-
sient translation:

Transient Translation

isEven 2 fun isEven n. nd (int, isEven, ARG); (n %2) =0

let dyFunc = (isEven :: int—bool =£0x—x)
in dyFunc ("Hi” :: str =0 *)

When the cast ¢y is applied at runtime to isEven, the blame map
records the cast. Then, when the check at the beginning of isEven’s
function body detects that is not an integer, the runtime attempts
to determine which cast (if any) was responsible by looking up
the address of the isEven function in the blame map, where it will
find the cast int—bool =0 x—+. Next, the runtime determines if
this cast was potentially responsible for the error: the ARG context
tag at the failed check indicates that it was checking a function
argument, and that the cast int—bool = x—x is unsafe in its
argument positions (due to contravariance). Finally, the runtime
finds that the actual argument to the function call is str, which
conflicts with the domain of the function type int, and therefore
indicates that the int—bool =¢0x—x cast is at fault.

It is not always possible, however, to go directly from a
check failure to an incompatible cast. In the following program,
makeEqChecker takes a string and returns a function that checks its
argument against the string. The makeEqChecker function is then
cast to str — * — x, applied to a string, and then the resulting
function is applied to an integer.

Transient translation
fun makeEqChecker v.
v} (str, makeEqChecker, ARG);
fun eqChecker w.
wil (str, eqChecker, ARG);
v=w

let castFunc=(makeEqChecker ::str—sstr—bool =£0 str—x—«)
in ((castFunc "Hi”){ (—, castFunc, RES)) (42 :: int="1x)

At runtime, a check inside eqChecker will detect that 42 is not a
string. At this point, the runtime will look up eqChecker in the
blame map in an attempt to find the responsible cast, but eqChecker
never passed through a cast; it was implicitly cast as a result of the
cast on makeEqChecker.

However, there is enough information in the inserted casts and
checks to tie the check failure with the cast on makeEqChecker:
when makeEqChecker is applied, a check ensures that the result
corresponds with the type tag —. This check updates the blame
map before returning the result, adding an internal pointer from the
result of the function call (the address of this particular instance of
eqChecker) to the value that returned it (here makeEqChecker). This
blame map appears in Figure 1.

When the check fails, the runtime must construct blame infor-
mation. To do so, it traverses the pointer within the blame map from
eqChecker to makeEqChecker, including the context tag RES that indi-
cates eqChecker is the result of a call to makeEqChecker. The runtime
uses this data in collaboration with the cast on makeEqChecker to

makeEqChecker eqChecker

{str—str—str =%str—*—«} | { (makeEqChecker, RES)}

-
N -
~ -

Figure 1. The blame map for eqChecker and makeEqChecker.

discern that the cast is potentially responsible for the check failure,
and ultimately blame it.

3.2 Transient Blame is not Guarded Blame

Through use of the blame map, casts and checks collaborate to re-
construct the chains of responsibility that guarded proxies provide.
Even so, the transient blame behavior differs from guarded: the
algorithm may blame multiple casts if each of them is reachable in
the blame map and may be responsible for the check failure occur-
ring (similar to the behavior of the monotonic approach [37]), and
if a sequence of incompatible casts are applied to a value but the
value is never used (e.g., a function that is never applied), then no
error occurs. Even so, this approach preserves the blame-subtyping
theorem [50] (as we show in Section 5.1).

4. The Transient Gradual Lambda Calculus *,

In this section, we present the first formal semantics for transient,
including a source-to-target translation, runtime semantics, and a
blame system.

We begin with the source language *, with expressions e, in
Figure 2, which includes variables, recursive functions, mutable
references, numbers, and addition. A*, also has types 7' which
range over function types 11 — 15, reference types ref T', integer
types int, and the dynamic type *.

Following previous approaches to gradual typing [33, 35, 43,
45], the semantics of *, are defined by translation into a target
language)\él (as expressions e in Figure 2) which contains type
checks as well as the usual type casts. We then define a single-
step reduction relation over the)\éL language. Unlike the targets of
cast insertion from previous work [23, 33, 50],)\2L is a dynamically
typed calculus. Types appear syntactically in the casts of)\ﬁ, and
shallow type tags S [6] are used in its checks.

This section proceeds as follows: we present the transient trans-
lation process (§4.1); the runtime semantics for the target language,
including blame machinery for transient (§4.2); and finally present
the formal transient blame assignment algorithm (§4.3).

4.1 Translating *, to \!

The translation relation, given in Figure 3, converts a type environ-
ment I' and source term e into a target term e at type 7', inserting
type casts e::7" =¢ T and type checks e1L(S; ea; 7).

The translation proceeds as follows:

e Numbers n and variables x are translated to themselves; num-
bers have type int and the types of variables are given by I'.

e Addition translates its operands es; and es2 into e; and e and
constructs an output expression that casts e; and ez to integers
with new blame labels ¢; and ¢> before performing addition.

e The translation of a function fun f (z:7) — T. e, isa A} func-
tion without type annotations. To ensure that the function argu-
ment corresponds to the static type 71 of the original function
input, the translation inserts the type check z{}{(T%; f; ARG) be-
fore the translated function body. If this check fails, f indicates

AX, exprs es

types T

)\éL exprs e

tags T

type tags S

z|fun f (x:T) > T.es | es es
ref e | les | esi=es
n | es + es

int | T =T |*|refT

z|v|funfx.e
eele + e

refe| le|e:=e

exT = T | el(S;e;r)
RES | ARG | DEREF

int |—| ref | x

addresses a S addresses
labels ¢ € blame labels
Figure 2. Syntax of *, and /\f.

T'(z)=T
I'Fn~n:int F'rtax~ax:T
I'tesi~e Ty Ty ~int fresh(¢y)
IT'keso~eg:Ty T ~int fresh(dz)

T'Fest + es2~ (e1:Ty =41 int) + (e2::To =£2 int) : int

D, f:Ty = To,x:Ties~e T

Ty ~ T}

Ik fun f (x:T1) — To. €5 ~
fun f z. (let x = z{{|T1]; f; ARG) ine€') : Th — T»

I'kesgt~er:T ToTy—Ts
Thesg~e: T Ty~T|

fresh(f)
fresh(¢)

Tkeseso~let f=e T =T — Thin
(f (e2:TY = T T2]; f;RES) : Th

I'Fes~e:T

I'krefes~refe:refT

F'Fes~e:T

I'Fleg ~ let © = exT = ref Ty in lzl}(| Ty |; x; DEREF) : T}

I'tesy~er:T TrrefTy
I'kes2~ex: T

T > ref Ty fresh(x) fresh(¢)
fresh(¢1)
T ~T} fresh(¢2)

I'Fesii=es2 ~ (e1::T =4 ref T):=(ez:: Ty =t2 T1) :int

[*] =% lint] = int
|71 — To] =— Lref T'| = ref
T>T
ref T' > ref T' * > ref x
T =TTy — 1o * > % — %
T~T
int ~ int *~ T T ~ %
T ~Th T ~ T3 Ty ~ Ty

ref Th ~ ref Th

T1—>T2NT3—>T4

Figure 3. Translation from A\, to /\f.

the function being eliminated by the call and ARG indicates that
the failure was the result of an ill-typed argument.

Application translates its arguments e51 and es2 into e; and ea,
ensures that es; has type 7, and uses the > relation (“match-
ing”) to ensure that 7" is either dynamic or a function type,
which allows it to be broken down into a source type 771 and
a target type T5. It also ensures that es2 has type T} consistent
with 71, and it casts e; to type 17 — T and e2 to type T1.
The cast of e1 to 177 — 75 does not ensure that the result of the
application has type 75, however, and thus the translation pro-
cess wraps the application in a check to ensure that the result
has the appropriate type. This check includes the information
that e; (which we let-bind to f to prevent duplicate evaluation)
was the function that was applied and that the result RES of the
application is being checked.

References ref e, translate es to e and yield ref e.

Reference mutation translates both sides of the assignment.
Similar to function application, casts are inserted to ensure that
the left hand side is a reference and that the right hand side
matches the reference type.

Dereferences les are translated by translating e; to e, using a
cast to ensure that its type is consistent with type ref 71, and, fi-
nally, placing a check around the dereference which ensures that
the reference being eliminated is at type 71 (where the elim-
inated value is the reference itself and the context tag DEREF
indicates dereference).

4.2 Reduction Semantics for /\?

The)\f reduction relation, defined in Figure 4, is a single-step
reduction that works over configurations of the form
(e, o, B)

where e is an expression, o is a heap, and B is the runtime
blame map, which associates heap addresses with cast information.
We update this blame map B at cast and check sites (using the
utility definition p), associating new blame information with heap
addresses a. When a cast or check fails, we use this blame map to
assign blame.

The reduction relation — has a number of unusual features:

e Functions are not values in this calculus. Evaluating a function
yields a fresh heap address pointing to the function’s code (with
self-references substituted away). Functions are stored in the
heap so that every function has a unique address, which is used
in blame tracking.

Function applications look up the callee’s code from the heap
and then perform S-reduction as usual.

Cast expressions v::17 =¢ Th check if the value v corresponds
to the tag |72 (which is the shallow tag corresponding to
the type T3, as defined in Figure 3) using the hastype relation
(bottom of Figure 4). Evaluation proceeds as follows, based on
hastype’s result and v’s shape:

* If hastype(o,v,|T2]) and v is not a heap address, v is
returned immediately.

* If hastype(o, v, |T>]) and v is a heap address, the blame
map B3 is updated to record the cast, and v is returned.

= If the value and the tag do not match, then the result is an
error blaming ¢.

Casts alter B by extending the blame information associated
with a particular address with a new labeled type L (compiled
from the casts as shown in Figure 5) that annotates each element
in the type structure with an optional label indicating whether

eval. contexts E O|Ee|vE|E +e|lv+ E
ref E|\E | E:=e | E2T =T

EU(S;e;r) | vi(S; E;r)

machine states ¢ = (e,o0,B) | BLAME(L)

values v = al|n

heaps o law h;o

heap values h u= (Az.e)|v

blame sets B = -la—bB

blame elems. b == (a,r)|L

labeled types L == int9|L—=9L|reflL|x|L*
label sets L C blame labels

optional labels ¢ == {]e€

<€7U’B> — <

(fun f z. e, 0, B) — (a,0[a — (Az.€[a/f])], B)
where fresh(a)
(av, o, B) — {e[v/],0,B)
where o(a) = (Az.e)

(ref v, 0, B) — (a,ola — v], B)
where fresh(a)
(!G,, a, B> - <’U, a, B>
where o(a) = v
(a:=v, o, B) — (0, o[a — v], B)
where o(a) = v’

(nl + na2, o, B> — (n/,U,B>
where n/ = n1 + na

(v:Th = Ty, 0, B) — (v, 0, 0B, a, [T1 =¢ T2]))

where hastype(o, v, |T2]),v =a
(v =8 Ty, 0, B) — (v,0,B)

where hastype(o, v, |T2]),v # a
(v:Ty = Ty, 0, B) — BLAME({{})

where —(hastype(o, v, |T2]))

(vi{S;a;r), o, BY — (v,0,0(B,ad’, {a,r)))

where hastype(o, v, S),v = a’
(vi(S;a;7), 0, B) — (v,0,B)

where hastype(o, v, S),v # a’
(vi{S; a;r), o, B) — blame(c, v, a,r, B)

where —(hastype(o, v, S))

o(B,a,b) =B
o(B,a,b) = Bla — B(a) U {b}]
(e,o,B) —> ¢

(e,o,B) — (¢/, 0, B') (e,0,B) — BLAME(L)
(Ele], o, B) — (E[e'],0’,B’) (Ele], 0, B) — BLAME(L)

hastype(o, v, S)

hastype(o, n, int) hastype(o, v, *)

o(a) = (Az.e) o(a) =v
hastype(o, a, —) hastype(o, a, ref)

Figure 4. Reduction definitions and semantics for the machine
configuration for e.

[* = «]

[int =¢ int]

[int =¢ «]

[*x =¢int]

11— To =4 Ty — Tu]
|IT1 — T =1t *ﬂ

|I* :>£ T — Tzﬂ

[ref Ty = ref T5]

[ref T =¢ 4]

[x =¢ ref T1]

[[Tl =>Z TQH

[x ¢]

[int ¢ int]

[int ¢ 4]

[* ¢ int]

IIT;[— Ty <:>Z T3 — T4ﬂ
|IT1 — T <:>Z *ﬂ

[x f Tn — Ty

[[ref Ty <:>£ ref TQH

[ref Ty < «]

[*x &¢ ref T1]

[T1 ot T5]

*

int€

int€

intf

|IT3 :>£ Tl]] —€ |IT2 :>Z T4]]
|I* :>[Tlﬂ —€ [[TQ :>Z *ﬂ
|IT1 ié *ﬂ —>[[[* :>Z TQ]]
refe [Tz ¢ T1]

refe [x ¢ T1]

ref® [T1 <4 «]

1% otherwise

*
int€

int!

int!

|IT3 <:>£ Tl]] —€ |IT2 <:>£ T4]]
|I* <:>£ Tlﬂ —>[[[TQ <:>Z *]]
[T1 ¢ «] =¢ [x ¢ T3]
ref€ |IT2 <:>é Tl]]

ref® [x ¢ T1]

reft [Ty <¢ «]

L% otherwise

Figure 5. Compilation of casts to labeled types

or not the associated cast is responsible for introducing that
portion of the type [34].

Check expressions v{}(S; a; r) use the hastype relation to com-
pare v and S. If the comparison succeeds, the checked value
v is returned unmodified, and if v is higher-order then B is
updated to record the check. Otherwise, the blame algorithm
(84.3) is invoked to assign blame. Successful checks on higher
order values add blame pointers (a’,7) to a blame map entry
B(a), where a’ is v, the checked value. Cast insertion ensures
that a is the value responsible for this check—if the check is on
a function call or argument, a is the address of the function, and
if it is a check on a dereference, a is the reference. The blame
pointer indicates that any casts applied to a’ (or any value reach-
able from @’ in BB), can potentially affect any future check on a,
and may need to be considered when assigning blame. These
pointer chains within the blame map allow the runtime system
to blame specific casts when a check signals an error.

4.3 Blame Assignment

As previously stated, if the runtime system detects a type violation,
it determines which boundary crossing caused the violation to
occur and blames it. If a cast fails immediately, we blame the
cast itself. If, however, we detect the violation through a check,
determining the guilty cast is more complicated: the runtime system
must determine which cast(s) are responsible for the failure, and
blame each cast that could potentially be responsible for the error
that occurred. For example, consider the following code, in which
a string reference is casted and passed into two dynamically typed
functions which both update it with an integer. The original *,
source is on the left and the)\2l translation is on the right.

>~

i
>

<&

g éfung(x:*).x*42 g éfungx.x::42
h éfunh(y:*).y.—Zl h éfunhy.y::21
rf £ ref "hello” f 2 ref “hello”

g 13 g (rfuref str =f04);
h if .. 09,y
L h (rfuref str =%1x);

(') (str, rf, DEREF)

When the check on the dereference on the last line of the /\2L
code occurs, the result is 21, and thus an error is raised. However,
the blame assignment algorithm will report that both casts could
potentially have led to the error.

Figure 6 shows the blame function (used to allocate blame when
a check fails), which takes the following arguments:

e the current heap o,
e the value v which triggered the check failure,

e the heap address a representing the eliminated value of the
triggering check,

e a context tag r indicating what operation triggered the check,

e and the current blame set .

Given these inputs, the algorithm computes a set of labels ¢ which
are collectively responsible for the failure, using helper functions
collectblame and resolve.

The collectblame function takes a blame element b—either a
labeled type L or an internal pointer—and a list of context tags 7,
and proceeds based on the shape of b, collecting blame from the
blame set 3 as follows:

e If the blame element is a pointer (a,), then the pointer’s
context tag r is prepended to 7, and collectblame is recursively
invoked on all the blame elements in B(a).

e If the blame element is a labeled type L, then the extract
metafunction uses 7 as a “path” through L to extract some L/,
a subterm of L. For example,

extract(ARG:RES:DEREF, (int® —%2 ref® int’3) =41 int€) = int’3

according to the cast labeled £3. If L’ does not have a label, it

cannot be blame candidate: the cast that introduced the new type
did not change this portion of the type. If a label is attached,
however, then the cast could have introduced this error and thus
L’ is included in the “potential blame set” L.

Once collectblame has constructed a set L of blame candidates, the
resolve metafunction compares v—the actual value that triggered
the error—with each L € L. If L is L% or if, after L is converted
to type tag S as | L] = S, S is not related to v by hastype, the
top-level label ¢ attached to L is one of the labels blamed.

For example, in the following program, the constant function
cnst42 is passed into fnl and fn2.

fnl 2 fun g (x:int—int)—str . x
fn2 2 fun h (y:str—str)—str . y 21
cnstd2 2 fun cnst42 (n: %) —>*.42
fnl cnst42;

fn2 cnst42

N

fnl fungx . x

2 funhy . (y 21){ (str, y, RES)
cnstd2 2 fun cnstd2 n . 42

fnl (cnst42 :: +—x=>L0int—int);

2 (cnst42 :: k—x=>L1str—sstr)

[1>

Casts are applied to cnst42 when it is passed into both fns. Each cast
adds an entry in B to the casts that have been applied to the address
of cnst42: int® —%0 int for the cast labeled £o, and str® —% str’t
for the cast labeled ¢;. Then, when fin2 applies cnst42 and expects to
receive a str as the result, an error is raised because 42 is returned
instead. The collectblame metafunction looks into the casts that
have been applied to cnsr42 in BB, and since the check that detected
the error was marked with RES, extracts the target type from each
of the labeled function types. The result is {int®®, str* }. The value
that actually triggered the error, 42 is related to int by hastype, so
¢y cannot be blamed. However, it is not related to str, so the result
blames ¢;.

5. Blame, Soundness, and the Gradual Guarantee

With our languages, translation, and runtime systems in place, we
now present theoretical results for the A%,/ /\}L formalism, including
the blame theorem (§5.1), open-world soundness (§5.2), and the
gradual guarantee (§5.3).

5.1 Blame Theorem

The algorithm that transient uses for blame tracking and assign-
ment is dramatically different from the techniques in guarded sys-
tems. Nonetheless, it still obeys the blame-subtyping theorem [50]:
programs whose implicit type conversions are safe will never be
blamed for cast failures. Specifically, conversions which are up-
casts with respect to the blame subtyping relation (Figure 6) will
never be blamed.

In /\éL it is insufficient to reason solely about terms because
blame information also appears in the blame map 3. Therefore we
extend the standard safe relation [2, 34, 37, 50] to use B:

Definition 5.1 (Blame Safety for Terms). A term e is safe with
respect to label { under a blame map B, written B + e safe ,
if there are no unsafe-for-f casts are present in e and that no
reachable unsafe casts have occurred and been stored in .

We define this predicate in Figure A.6 of the supplemental
material [49], along with similar predicates over L-types, blame
elements b, and heaps o.

To prove the blame theorem, we must also show that the blame
algorithm presented above does not blame any cast that the program
was safe for. We show this using variants of the standard progress
and preservation lemmas, showing that safety is preserved by eval-
uation and that terms that are safe £ cannot blame ¢ when evaluated.

Lemma 5.2 (Blame safety progress). If B - e safe ¢ and B +
o safel and (e,o,B) — ¢, then ¢ # BLAME(L) with £ € L.

Lemma 5.3 (Blame safety preservation). If B + e safe ¢ and
B+ o safel and {e,c0,B) — (e',0',B'), then B' - ¢’ safe (
and B' + o' safel.

Complete proofs of these lemmas are given in Appendix B.2 of
the supplemental material [49]. Finally, we state the blame theo-
rem:

Theorem 5.4 (The Blame Theorem). For any es and T, if
eles~~e:T,

extract(t,L) = L

L

extract(T, La)
extract(T, L1)
extract(T, L)

)
extract((RES :), L1 —9 Lo)
extract((ARG : 7), L1 —9 La)
extract((DEREF : T), ref L)
extract((r : T), %)

label(L) = q
() label(x) = €
label(int?) = ¢
label(L1 —9 L2) = ¢
label(reff L) = ¢
label(1%) = ¢

L] =T
) == lint? | =int
[Li]=T1 [L2] =T L] =T

LLI —9 LQJ = T1 — T2 Lrefq LJ =ref T

collectblame (7, B,b) = L

extract(t, L)=L' label(L') = £ extract(¥, L)=L' label(L') = ¢
collectblame (7, B, L) = {L'} collectblame (T, B, L) = (

collectblame(T, B, (a,7)) = UpeB(a) collectblame((r;T), B, b)

resolve(o,v, L) = L

resolve(a, v, (L4 L)) = l;resolve(o, v, L)
label(L);resolve(o, v, L)
resolve(o, v, (L;L)) = if —\hastypi(a, v LLELD)
resolve(o,v, L)

otherwise
resolve(o,v,) = -

blame(o,v,a,r,B) =¢

L = Upep(a) collectblame(r, 3, b)
blame(o, v, a,r,B) = BLAME(L)

L = resolve(o,v, L)

T<3pT

Ty — Ty <tip % — * ref T' <:p, ref x

int <:p * T — To <ip % ref T' <:p
T3 <:p T To <:p Ty
int <: int Ty — Ty <:ip T3 — Ty ref T' <:, ref T

Figure 6. The transient blame-assignment algorithm

e ¢ contains a subterm e’ T =¢ T> containing the only occur-
rence of ¢ in e, and

o Ty <ip T,
then (e, 0,0) /—" BLAME(L) with{ € L.

The proof of this theorem is given in Appendix B.2 of the
supplemental material [49].

5.2 Open-World Soundness

Next, we focus on open-world soundness, which states that a well-
typed term in A%, translated into)\j}, may safely interact with
arbitrary A? code.

To prove this property we proceed as follows: first, we introduce
origin tracking for terms, indicating if a term e is a translated *,
term or a native)\? term; then we introduce a type system for)\i,L
that uses this origin tracking to ensure that translated terms include

z|v|funfz.e|(ee)’ |e +P e|refe
leP | e:=Pe | exT = T | ell(T; e;7)
O] e

Olfunfz.C|Ce* |vC*|...

bS]
=1

Figure 7. Syntax of)\i} with origin tracking.

(e, 0, B) stuck p

a(a) =

(nvP, o, B) stuck p (avP, o, B) stuck p

(a +P v, 0, B) stuck p (n +? a,0,B) stuck p
o(a) = (Az.e)
(la?, o, B) stuck p
o(a) = (Az.e)
(a:=Pv, 0, B) stuck p

(In?, o, B) stuck p

(n:=Pv, o, B) stuck p
(e, 0, B) stuck p
(Ele], o, B) stuck p

Figure 8. Stuck configurations

the appropriate casts and checks; next, we introduce expression
contexts for embedding translated expressions into untyped code;
and finally we state the open-world soundness theorem and discuss
its proof. The entire proof is in the supplemental material [49].

Origin tracking for)\f. To prove that only untranslated code can
reach a stuck configuration, we must distinguish between translated
and untranslated code. We achieve this by introducing origin track-
ing for)\}l (similar to the ownership annotations of Dimoulas et al.
[13]) and marking the elimination forms of the language (applica-
tion, addition, dereference, and mutation) with owners. Figure 7 de-
fines this revised version of)\j} with origin markers p, which ranges
over ¢, for code translated from well-typed A%, terms, and ¢, for
code that originates in)\él and lacks static types.

With this modified target language, the translation shown in Fig-
ure 3 is modified to attach ¢ markers to translated terms (Figure A.1
of Appendix A in the supplemental material [49]). The reduction
rules of Figure 4 are unchanged modulo the addition of markers.

Next, we define a stuck relation over machine configurations
(Figure 8). Configurations are stuck if they cannot be reduced by
any evaluation rule, similar to the faulty expressions of Wright and
Felleisen [51]. The stuck relation also indicates whether a stuck
state was caused by a ¢-marked term or a 4-marked term. (We will
prove below that no ¢ term is ever stuck.)

Origin-sensitive typing for)\f. In addition to indicating whether
a dynamic type error occurred in typed or untyped code, origin
markers also let us define a type system for /\f that places restric-
tions on translated code. We use this type system to state and prove
open-world soundness. This type system relates expressions to type
tags S, as defined in Figure 2, which are repurposed as types.

The typing rules are shown in Figure 9. There are two rules for
each marked expression, one for ¢ and one for ¢.

Each ¢ rule requires that all subexpressions be typed at x (which
may subsume any other type via TSUBSUMP), and thus no pro-
grams may be ill-typed unless they contain ¢-marked expressions.
The ¢ rules are more restrictive and allow us to prove that a ¢-
marked expression is well-typed when it cannot become stuck, and
thus ¢ rules require that subexpressions have the appropriate types
to ensure — reducibility.

I¥ke: S

(TVAR) (TADDR) (TINT) (TSUBSUMP)

I'z)=S Y(a) =S ;Yke: S
IiYkx: S I''YFa:S Y Fncint ;Y kFe:x
(TCHECK) (TCAST)

'Y ke :x INEEes: tagtype(r)
;3 F ey (S;ea;r): S

iXbe: [T Th~T»
IS ke =0Ty | T2

Tyx:x, fi— X ke x
(TFUN)
I''¥Ffun fx.e:—

Y bker 0 S INx:S; X Fex: S

(TLET)
I'YFletx=epines : S2

(TAPP) (TAPP-x)
IYkFe:—» IYXkes:x Y ke :ix Y Fex:x

F;El—eleg:* F;Zl—elegz*

(TREF) (TDEREF) (TDEREF-%)
Y kFe:x X ke ref ;X kFe:x
I'Y Frefe:ref ;8 Hed @ x ;2 Fe* o«

(TUPDTREF)
Y bep:ref T EFeg: *

IR e1:="es : int

(TUPDTREF-%)
X kFer:ix T Fes:x

I e1:=%es : int

tagtype(r) = S

tagtype(ARG) =— tagtype(RES) =— tagtype(DEREF) = ref

Va € dom(X), L+ o(a) : X(a)
(THEAP)
Yko
XFh:S
0 Fov:x D, xx; X Fe:x
(THREF) ——— (THFUN) ————
Y ko ref Sk (Az.e) i—

YCY®

Va € dom(32), X1(a) = X2(a)
Y1 E X

Figure 9. Typing rules for)\él (excluding addition).

Finally, TAPP and TDEREF are judged to have type x. If the
result of such an expression is expected to have a more specific
type like — or ref, then a check has to be inserted around the
expression. Checks accept expressions of type x and return the type
that the expression is checked against. This design ensures that any
¢-marked expression uses casts and checks in a defensive way.

Expression contexts for explicit embedding. To reason about
code interactions, we use program contexts C [22], defined in Fig-
ure 7. These contexts indicate how embedding occurs for translated
¢ code into ¢ programs, and thus these contexts are all marked with
¢ origin. These contexts are typed in the usual way [22]:

C: I8 = 1':8,
The context typing rules are in Figure A.5 of the supplement [49].

Open-world soundness. Equipped with origin markers and a type
system for A?, we now state open-world soundness (where |I'] is
the result of applying |T"| from Figure 3 to all the types in I").

TCT

T C Ty
ref T1 C ref 15

Ti1 C To Ti2 C T

TCx intCint
Ty — Tio E Toy — Too

Figure 10. Type precision

Theorem 5.5 (Open-world soundness). IfI' - es ~» e : T and
FC: [T\ T] = 0;S, then 0;0 - Cle] : S and either:

* (Cle],0,0) —* (v,0,B)and); £+ v : Sand ¥ + o, or

e (Cle],0,0) —™* BLAME(L), or

e (Cle], 0,0y —* (€', 0,B) and (€', o, B) stuck ¢, or

e for all s such that {Cle],0,0) —* <, have that s = (€', o, B)
and exists ¢’ such that {¢', o, B) — ¢’

The proof is given in Appendix B.1. The proof combines a
progress and preservation type soundness proof (for)\f) with
proofs that the translation relation is type preserving and that the
composition of terms and contexts is well-typed. The progress
lemma requires that a configuration with a well-typed term either
steps to a new ¢ or is stuck via a ¢-marked term.

This theorem states that stuck configurations can never arise
from evaluating a ¢-marked term. If ¢-marked terms could become
stuck, it would indicate an uncaught type error in translated A%,
code. Type soundness is an immediate corollary of this theorem:

Corollary 5.5.1 (Type soundness). If @ + es ~ e : T then

0;0 F e: |T] and either:

e (e,0,0) —™ (v,0,B)and ;X v : |T] and + o, or

¢ {(e,0,0) —* BLAME(L), or

e for all s such that (e,),)) —* ¢, have that s = (€', o, B) and
exists ' such that {¢', o, B) — ¢’

Proof. By Theorem 5.5, taking C to be the empty context. O

Ramifications of open-world soundness. Because *, admits
open-world soundness, a program written in A*, can be used by
native /\% clients. For example, an *, library may put type an-
notations on its API boundaries, preventing ill-typed terms from
raising difficult-to-diagnose errors deep within the library—even if
the library interacts with code which has no concept of static types.

Furthermore, the *, code is protected from errors arising due
to mutation: while foreign functions are not modeled directly in
the A*, and)\éL calculi, the distinction between untranslated target-
language programs and foreign, compiled C code is only relevant
in guarded because of the presence of proxies. The transient de-
sign lacks proxies, and thus this distinction is irrelevant—foreign
functions may be modeled as native)\éL code.

5.3 The Gradual Guarantee

Finally, we prove that the gradual guarantee holds for A*,. The
gradual guarantee ensures that changing the static type annotations
in a program does not alter either the static or dynamic semantics
of the program, except by raising a static type error or causing
blame at runtime if the type annotations are strengthened [36].
This property allows programmers to be confident in gradually
adding types to their program: they know that a program will never
produce an entirely different result because of a change to the type
annotations. They are also guaranteed that if a program raises a
new error after a type annotation is added or strengthened, it is
because the new annotation was “wrong’: it did not correspond to
other types in the program (if the error is static) or to the program’s
values at runtime (if it is a runtime blame error).

To prove the gradual guarantee, we use a precision relation for
types, also referred to as naive subtyping [34], which is defined in
Figure 10. A type 1 is said to be more precise than 15, written
Ty C Ty, if T5 contains * in places where 7% does not.

We also extend precision to expressions in *,. For any two
expressions €1, €52, we have that es1 T eso if the expressions are
identical up to their type annotations, and if every type annotation
in es1 is more precise than the same type annotation in es2. The
specification of expression precision is given in Figure A.3 of the
supplemental material [49].

To state the gradual guarantee, we also extend precision to heaps
and values. These extensions are straightforward and can be found
in Figure A.4. With them, we prove the gradual guarantee for *,.

Theorem 5.6 (The gradual guarantee). Ifes C el and) - es ~
e: T, then

1.0kFe~e T withT CT', and

2. if{e,0,0) —* (v,0,B), then (¢/,0,0) —* (', o', B) with
vC v ando C o', and

3. if (e, 0,0) diverges, then (', 0, D) diverges, and

4. if (',0,0)—* (v, 0’ B'), then either (e, D, 0)—* (v, o, B)
withv C v’ and o C o', or {e,0,0) —* BLAME(L), and

5. if (', 0,0) diverges, then either (e, 0,) diverges or
(e,0,0) —* BLAME(L).

The proof is given in Appendix B.3 of the supplement [49]. Part
1 is proved by induction on es C e. Parts 2 and 3 are proved by
first showing that e = ¢’, and then proving a simulation between
the evaluation of e and €’. Parts 4 and 5 are corollaries of parts 2
and 3.

Part 1 of this theorem indicates that a less precise expression
will always typecheck successfully and be translated into a /\f
expression if a more precise one does: removing or weakening
type annotations will never cause a program to behave worse.
Parts 2 and 3 show that the weakening of type annotations from
a program can never cause the program to behave differently: if the
stronger program diverges, so will the weaker one, and if it returns
a result, the weaker one will return a result that is weaker than it.
Finally, parts 4 and 5 show that strengthening a program’s type
annotations can only cause it to behave differently than a weaker
one by producing a blame error—if the weaker program diverges,
then the stronger one will either go to blame or also diverge,
and if the weaker program returns a result, then the stronger one
will either go to blame or return a stronger result. Adding type
annotations can never, for example, cause a program to diverge if it
didn’t before.

6. Implementation and Evaluation

In this section, we discuss our implementation of the transient
system with blame in Reticulated Python, an implementation of
gradual typing for the Python language. We discuss the importance
of open-world soundness in this setting and then show experimental
performance results.

Reticulated Python provides a static typechecker, a source-to-
source translator from type-annotated Python-like programs to
Python 3 programs with the appropriate casts and checks, and
runtime libraries that implement these casts and checks. While
Reticulated supports several gradual typing designs, we focus on
extending the transient semantics with blame tracking as presented
in the previous sections. During evaluation, casts are recorded and
associated with the casted value in a global map and checks add
internal pointers within the map and use the algorithm described
in Section 4.3. When an error occurs, the runtime uses this map to
identify the responsible parties.

6.1 Open-World Soundness and Reticulated Python

We conjecture that Reticulated Python is also open-world sound
when using the transient semantics; it is certainly closer to open-
world soundness than its guarded semantics, and in separate work
we proved open-world soundness for Anthill Python, a calculus
based on Reticulated and supporting many of Python’s features
[47]. Vitousek et al. [48] ran each of their case studies without issue
under transient, but the guarded counterparts required substantial
modification to avoid proxy identity problems and, in the case
of the CherryPy web framework, the program was unable to run
because proxied values could not correctly interact with Python’s
pickling library. Likewise, the benchmarks that we test with our
modified version of Reticulated Python are able to interact with
pure Python libraries without errors or incorrect results.

6.2 Performance of Transient Reticulated Python

The pervasive checks that the transient design uses to ensure open-
world soundness come at a runtime cost, but our results indicate
that the cost is relatively small, especially when blame-tracking
features are disabled.

To analyze the runtime performance of transient, we applied
the transient implementation of Reticulated Python to several
benchmarks from the official Python benchmark suite.! We se-
lected 13 benchmark programs that were compatible with Python 3
and which did not make extensive use of external libraries. (While
Reticulated Python is designed to be open-world sound and there-
fore allow interaction with external libraries, doing so here would
shed little light on the cost of runtime soundness since the bulk of
execution time would occur in untranslated code.)

We modified each of these benchmarks, inserting static type
annotations wherever possible. In some cases, there were param-
eters or object fields that were inherently dynamic, or which Retic-
ulated Python’s type system is unable to provide static types for. In
these cases, we defaulted to the dynamic type. Additionally, in sev-
eral examples we made minor changes to function bodies to avoid
trivial dynamicity—for example, when it couldn’t change the se-
mantics of the program, changing a list that was initialized with
None objects and then filled with ints (which could only be typed
as List (%)), to a list initialized with numbers (soundly typed at
List (int)). We then used Reticulated Python to translate the pro-
grams using transient semantics and executed the translated pro-
gram with standard Python 3.4.

Our experiments consider two versions of Reticulated Python’s
transient implementation: one using the blame tracking technique
described in Section 3 and one that does not track blame (merely
reporting errors on check failure).

Figure 11 compares the runtime efficiency of the transient
translations of the benchmarks with the original untyped code.
The green bars show the relative performance of the typed-and-
translated programs without blame compared to standard Python
(the black bars, normalized to 1), while the purple bars show the
relative performance of those same programs with blame tracking.

In our tests, the transient system without blame performs at
best equally as fast as regular Python, and at worst 5.4x slower.
The average slowdown was 2.5x. The test cases that use classes and
lists heavily (and thus require checks when members are read from
objects or elements read from lists) performed worse than those
which primarily used functions and mathematical operators.

The performance degradation exhibited by transient Reticu-
lated Python is significantly less than has been observed in Typed
Racket, where in many cases slowdown of over 100x occurs [42].
Transient performs well within the 3/10-usable criterion sug-

'https://hg.python.org/benchmarks/

gested by Takikawa et al. [42], meaning that no benchmark incurs a
more than 10x slowdown compared to the regular Python version.

While this slowdown is not acceptable for all classes of Python
programs (where it may be necessary to disable runtime checks for
distribution), many other applications are tolerant of this degree
of overhead, and in such cases it would be practical to deploy
applications with transient’s runtime system in place.

Unsurprisingly, Reticulated Python is less efficient when per-
forming blame tracking. As Figure 11 shows, however, this ad-
ditional cost is never more than 4x compared to the blame-free
version, and never more than 18x compared to the original, un-
typed code. While substantial, this overhead is not necessarily pro-
hibitive: programmers may still use it for developmental debug-
ging, and in most cases it falls within the 3/10-usable range and
never incurs as much slowdown as Typed Racket sometimes does.
We envision that a common approach, when blame tracking is too
expensive, would be to run programs with blame disabled but then
re-enable it when a check failure is detected.

7. Related Work

Open-world soundness. Open-world soundness is related to the
assertion of Wadler and Findler [50] that “well-typed programs
can’t be blamed.” We adapt this approach to support the dynami-
cally typed target languages of modern, real-world gradual typing.

Allende et al. [4] develop a cast insertion scheme for Gradu-
altalk [3] intended to facilitate interaction between typed libraries
and untyped clients without requiring client recompilation. Their
approach, called execution semantics, uses callee-installed proxies
on function arguments. The callee aspect is similar to the transient
semantics, but it still uses proxies and so is vulnerable to problems
of object identity and interactions with foreign functions.

Typed Racket [41, 45] includes first-class classes and strives
for open-world interaction between Typed Racket modules and
untyped Racket, utilizing Racket’s software contract system. While
Racket provides robust capabilities for module exports and proxied
values, the Typed Racket implementation also faces some of the
same problems we address in this paper. First, Racket’s native
proxies inhibit pointer-based equality checking via eq? (though
Racket’s deep equality operator equal? looks through proxies).
Second, Racket’s runtime system accounts for potential proxies
when using built-in operations. As stated previously, this style of
support would require modifying the Python runtime, impacting
Reticulated Python’s portability.

Dimoulas et al. [14] introduce complete monitoring, a correct-
ness criterion for contract systems that ensures that each contract
violation blaming party k is the result of evaluating a module
boundary crossing, where the value crossing the boundary is owned
by k. Open-world soundness similarly uses origin tracking (ap-
plied to reducible expressions, rather than values) to ensure that
any stuck state is reached by evaluating untranslated code. Open-
world soundness also guarantees that the system will detect any
errors original to the gradually-typed program.

Gradual typing. Language designers have been interested in mix-
ing static and dynamic typing in the same language for quite some
time [1, 10, 11]. Gradual typing [5, 19, 33, 44], was preceded by
quasi-static typing of Thatte [43], the Java extensions of Gray et al.
[21], Bigloo [32], and Cecil [12]. Gradual typing is distinguished
by its use of the consistency relation [5, 33] to govern where typed
and untyped code can flow into each other, and where runtime
checks need to be performed to ensure safety at runtime. See Siek
et al. [36] for a detailed discussion of the core principles that grad-
ual typing aims to satisfy. Blame assignment originated with Find-
ler and Felleisen [18] and was extended to gradual typing by Tobin-
Hochstadt and Felleisen [44] and Wadler and Findler [50].

20

18

16

14

12

Relative runtime
= (2] o]

]

callsimple
nqueens

pidigits fannkuch
meteorcontest nbody

— JJJJJII

callmethod
callmethodslots float go

W python3

pystone chaos spectralnorm

Figure 11. Runtime comparison of Reticulated Python to standard Python 3.4. Experiments were performed on an Ubuntu 14.04 laptop with

a 2.8GHz Intel 17-3840QM CPU and 16GB memory.

Another relevant alternative design is the like-types approach [8,
52]. This approach avoids proxies by splitting static type anno-
tations into concrete types (whose inhabitants are never prox-
ied, and which cannot flow into dynamically typed code) and
like types, which can freely interact with dynamic code. This ap-
proach was used in designing a sound variant of TypeScript called
StrongScript, which obeys open-world soundness [31]. However,
because of the incompatibility of concrete and like types, it is not
straightforward to evolve a program in StrongScript from dynamic
to static, as is frequently desirable. As a result, the gradual guar-
antee of Siek et al. [36] does not hold for these designs.

TS* [39] and Safe Typescript [29] are further variants of Type-
Script that implement sound gradual typing. However, compared to
the “classical,” type consistency based approaches to gradual typ-
ing, these languages are restrictive in what kinds of programs are
accepted. In these systems, implicit conversions are only allowed
on upcasts (using a subtyping lattice similar to that shown in Fig-
ure 6). For example, a function of the type any — any cannot
be cast to bool — bool (where any corresponds to x). TS* addi-
tionally supports an additional dynamic type beyond any: the un
type for unsafe dynamic code. There are no implicit conversions
between typed values and un—the programmer must write explicit
casts. The gradual guarantee therefore does not hold.

In recent years, gradual typing and ideas related to it have
become popular among industrial language designers, with C# [7]
adding a dynamic type, and Typescript [27], Dart [20], and Hack
[16] offering static typechecking of optional type annotations.

Alternatives to transient semantics. Other approaches also tackle
the problem of object identity: Keil and Thiemann [25] present
a solution based on the idea of making proxies transparent with
respect to identity and type tests. TypeScript [27], Dart [20], and
other languages that compile to JavaScript without any runtime
checks are trivially free of proxies but their type annotations are not
enforced at runtime. Dart offers a checked mode, wherein function
arguments are checked against optional type annotations, similar to
the transient approach, but these checks do not cover all cases and
uncaught runtime type errors are still possible [26].

Contracts. Eiffel [15] first popularized software contracts and the
idea of writing programs with pervasive contract checking, and it
has inspired a large body of research [2, 13, 14, 17, 18, 24]. This
work typically relies on a hybridized guarded/transient approach
to verification: functions and objects are wrapped in proxies as they
move through contracts [38], but contracts are “defensive”: callees

are always responsible for ensuring their inputs and outputs pass
their contracts, and callers are absolved of all programming respon-
sibility. The transient approach is more defensive: each callee en-
sures that its inputs have the correct type, and every translated caller
ensures that its outputs have the correct type.

Blame tracking was originally invented for software contracts
and has been widely studied in that context [2, 13, 18, 24]. While
our approach mirrors the overall blame approaches proposed in
these works, gradual typing varies due to its need to enforce global
type invariants. Moreover, our values do not carry blame informa-
tion, and thus we introduce a side-channel, global communication
model similar to approach described by Swords et al. [40], commu-
nicating cast expectations to the blame map during execution.

8. Conclusion

We have discussed an important problem in the implementation of
sound gradually typed languages: ensuring soundness of typed pro-
grams in the presence of unmoderated interaction with untyped, un-
translated code. We refer to this problem as open-world soundness.
We showed that the traditional guarded design for gradual typing,
when embedded in a spartan host, inhibits open-world soundness,
but that it holds for the transient design of Vitousek et al. [48].
We developed a novel blame tracking technique that does not rely
on proxies and is therefore compatible with the transient design,
and we showed that the transient design obeys the gradual guar-
antee, allowing programmers to freely evolve their code between
static and dynamic. By evaluating Reticulated Python’s transient
design and extending it with blame, we showed that the use of the
transient design does not sacrifice usable efficiency. We provided
the first formal treatment of transient with the *, calculus (and
its translation target,)\j}), and proved open-world soundness, the
blame theorem, and the gradual guarantee.

Acknowledgments

We are grateful to Sam Tobin-Hochstadt, Amr Sabry, Ambrose
Bonnaire-Sergeant, Matteo Cimini, Andre Kuhlenschmidt, and
Christian A. Wailes for their feedback during the development of
this work, and to Jim Baker and Zeina Migeed for their assistance
and feedback in designing Reticulated Python.

This research was funded by the National Science Foundation
under grant number 1518844, SHF: Large: Gradual Typing Across
the Spectrum, and grant number 1217454, SHF: Small: Information
Effects.

References

[1] M. Abadi, L. Cardelli, B. Pierce, and G. Plotkin. Dynamic typing in a
statically-typed language. In POPL, 1989.

[2] Amal Ahmed, Robert Bruce Findler, Jeremy G. Siek, and Philip
Wadler. Blame for all. In POPL, 2011.

[3] Esteban Allende, Oscar Callad, Johan Fabry, Eric Tanter, and Markus
Denker. Gradual typing for smalltalk. Science of Computer Program-
ming, August 2013.

[4] Esteban Allende, Johan Fabry, and Eric Tanter. Cast insertion strate-
gies for gradually-typed objects. In DLS, 2013.

[5] Christopher Anderson and Sophia Drossopoulou. Baby]J - from object
based to class based programming via types. In Workshop on Object
Oriented Developments, 2003.

[6] Andrew W. Appel. Compiling with Continuations. Cambridge Uni-
versity Press, New York, NY, USA, 2007.

[7] Gavin Bierman, Erik Meijer, and Mads Torgersen. In ECOOP.
Springer-Verlag.

[8] Bard Bloom, John Field, Nathaniel Nystrom, Johan Ostlund, Gregor
Richards, Rok Strni$a, Jan Vitek, and Tobias Wrigstad. Thorn: Robust,
concurrent, extensible scripting on the jvm. In OOPSLA, 2009.

[9] Ambrose Bonnaire-Sergeant, Rowan Davies, and Sam Tobin-
Hochstad. Practical optional types for clojure. In ESOP, 2016.

[10] Gilad Bracha and David Griswold. Strongtalk: Typechecking
smalltalk in a production environment. In OOPSLA, New York, NY,
USA, 1993. ACM.

[11] Robert Cartwright. User-defined data types as an aid to verifying LISP
programs. In ICALP, 1976.

[12] Craig Chambers and the Cecil Group. The Cecil language: Specifi-
cation and rationale. Technical report, Department of Computer Sci-
ence and Engineering, University of Washington, Seattle, Washington,
2004.

[13] Christos Dimoulas, Robert Bruce Findler, Cormac Flanagan, and
Matthias Felleisen. Correct blame for contracts: no more scapegoat-
ing. In POPL, 2011.

[14] Christos Dimoulas, Sam Tobin-Hochstadt, and Matthias Felleisen.
Complete monitors for behavioral contracts. In ESOP, 2012.

[15] Eiffel. The Power of Design by Contract. URL http://www.
eiffel.com/developers/design_by_contract.html.

[16] Facebook. Hack, 2013. URL http://hacklang.org.

[17] Robert Bruce Findler and Matthias Blume. Contracts as pairs of
projections. In FLOPS, 2006.

[18] Robert Bruce Findler and Matthias Felleisen. Contracts for higher-
order functions. In ICFP, 2002.

[19] Cormac Flanagan. Hybrid type checking. In POPL, Charleston, South
Carolina, 2006.

[20] Google. Dart: structured web apps, 2011. URL http://dartlang.
org.

[21] Kathryn E. Gray, Robert Bruce Findler, and Matthew Flatt. Fine-
grained interoperability through mirrors and contracts. In OOPSLA.
ACM Press, 2005.

[22] Robert Harper. Practical Foundations for Programming Languages.
Cambridge University Press, New York, NY, USA, 2012.

[23] David Herman, Aaron Tomb, and Cormac Flanagan. Space-efficient
gradual typing. In Trends in Functional Programming, 2007.

[24] Matthias Keil and Peter Thiemann. Blame assignment for higher-order
contracts with intersection and union. In ICFP, 2015.

[25] Matthias Keil and Peter Thiemann. Transparent object proxies in
JavaScript. In ECOOP, 2015.

[26] Gianluca Mezzetti, Anders Mgller, and Fabio Strocco. Type unsound-
ness in practice: An empirical study of Dart. In DLS, 2016.

[27] Microsoft. Typescript, 2012. URL http://www.typescriptlang.
org/.

[28] Aseem Rastogi, Avik Chaudhuri, and Basil Hosmer. The ins and outs
of gradual type inference. In POPL, 2012.

[29] Aseem Rastogi, Nikhil Swamy, Cedric Fournet, Gavin Bierman, and
Panagiotis Vekris. Safe & efficient gradual typing for TypeScript.
Technical Report MSR-TR-2014-99, Microsoft Research, 2014.

[30] Brianna M. Ren, John Toman, T. Stephen Strickland, and Jeffrey S.
Foster. The ruby type checker. In Symposium on Applied Computing,
2013.

[31] Gregor Richards, Francesco Zappa Nardelli, and Jan Vitek. Concrete
Types for TypeScript. In ECOOP, 2015.

[32] Manuel Serrano. Bigloo: a practical Scheme compiler. Inria-
Rocquencourt, April 2002.

[33] Jeremy G. Siek and Walid Taha. Gradual typing for functional lan-
guages. In Scheme and Functional Programming Workshop, 2006.

[34] Jeremy G. Siek and Philip Wadler. Threesomes, with and without
blame. In POPL, 2010.

[35] Jeremy G. Siek, Ronald Garcia, and Walid Taha. Exploring the design
space of higher-order casts. In ESOP, 2009.

[36] Jeremy G. Siek, Michael M. Vitousek, Matteo Cimini, and John Tang
Boyland. Refined criteria for gradual typing. In SNAPL ’15, 2015.

[37] Jeremy G. Siek, Michael M. Vitousek, Matteo Cimini, Sam Tobin-
Hochstadt, and Ronald Garcia. Monotonic references for efficient
gradual typing. In ESOP, 2015.

[38] T. Stephen Strickland, Sam Tobin-Hochstadt, Robert Bruce Findler,
and Matthew Flatt. Chaperones and impersonators: run-time support
for reasonable interposition. In OOPSLA, 2012.

[39] Nikhil Swamy, Cedric Fournet, Aseem Rastogi, Karthikeyan Bharga-
van, Juan Chen, Pierre-Yves Strub, and Gavin Bierman. Gradual typ-
ing embedded securely in javascript. In POPL, 2014.

[40] Cameron Swords, Amr Sabry, and Sam Tobin-Hochstadt. Expressing
contract monitors as patterns of communication. In /CFP, 2015.

[41] Asumu Takikawa, T. Stephen Strickland, Christos Dimoulas, Sam
Tobin-Hochstadt, and Matthias Felleisen. Gradual typing for first-
class classes. In OOPSLA, 2012.

[42] Asumu Takikawa, Daniel Feltey, Ben Greenman, Max S. New, Jan
Vitek, and Matthias Felleisen. Is sound gradual typing dead? In POPL,
2016.

[43] Satish Thatte. Quasi-static typing. In POPL, 1990.

[44] Sam Tobin-Hochstadt and Matthias Felleisen. Interlanguage migra-
tion: From scripts to programs. In DLS, 2006.

[45] Sam Tobin-Hochstadt and Matthias Felleisen. The design and imple-
mentation of Typed Scheme. In POPL, January 2008.

[46] Sam Tobin-Hochstadt and Matthias Felleisen. Logical types for un-
typed languages. In ICFP, 2010.

[47] Michael M. Vitousek and Jeremy G. Siek. Gradual typing in an open
world. Technical Report TR729, Indiana University, 2016.

[48] Michael M. Vitousek, Andrew M. Kent, Jeremy G. Siek, and Jim
Baker. Design and evaluation of gradual typing for Python. In DLS,
2014.

[49] Michael M. Vitousek, Cameron Swords, and Jeremy G. Siek. Big
types in little runtime: Supplemental material, January 2017. URL
http://homes.soic.indiana.edu/mvitouse/popli7sup.pdf.

[50] Philip Wadler and Robert Bruce Findler. Well-typed programs can’t
be blamed. In ESOP, 2009.

[51] Andrew K. Wright and Matthias Felleisen. A syntactic approach to
type soundness. Information and Computation, 115(1):38-94, 1994.
ISSN 0890-5401.

[52] Tobias Wrigstad, Francesco Zappa Nardelli, Sylvain Lebresne, Johan
Ostlund, and Jan Vitek. In POPL, 2010.

