
A UNIFIED CHARACTERIZATION OF RUNTIME
VERIFICATION SYSTEMS AS PATTERNS OF

COMMUNICATION

Cameron Swords

Submitted to the faculty of the University Graduate School
in partial fulfillment of the requirements

for the degree
Doctor of Philosophy

in the School of Informatics, Computing, and Engineering
Indiana University

February 2019

Accepted by the Graduate Faculty, Indiana University, in partial fulfillment of the requirements for
the degree of Doctor of Philosophy.

Amr Sabry, Ph.D.

Lawrence S. Moss, Ph.D.

Jeremy Siek, Ph.D.

Sam Tobin-Hochstadt, Ph.D.

03/01/2018

ii

Copyright 2019
Cameron Swords

All rights reserved

iii

Acknowledgements

Writing a dissertation is, in a visceral sense, not a one-person task. My quest to discover and write

about the ideas in this thesis was, at times, arduous, encouraging, jovial, and dismal, and numerous

people helped me along the way, in nearly every way imaginable.

It started, I suppose, when my wife Rebecca Swords applied to Indiana University. We both planned

to pursue higher degrees, and she graduated ahead of me and began attending IU. While there,

she took Dan Friedman’s course on programming languages, and began studying programming

languages as a field. When I visited her at IU that fall, I saw two lectures: in the first, Dan Friedman

and Will Byrd magicked together a type inferencer in miniKanren in no more than 20 lines; in the

second, Sam Tobin-Hochstadt, then a post-doctoral researcher at Northeastern University visiting

IU for the week, presented Typed Racket. Between the two, programming language research piqued

my interest.

When I followed Rebecca to IU in the fall of 2011, I immersed myself in the PL research there,

signing up for Dan’s programming language course and attending the weekly PL Wonks talks1,

where I got to know much of the IU PL cohort (past and current). At the end of the semester, Dan

recruited me as his new lead teaching assistant, a position I likely would have held for significantly

longer if Amr Sabry hadn’t offered me a research assistantship the next semester to explore soft-

ware contract verification2. As is evidenced by this document, that work ultimately yielded this

dissertation.

Amr allowed me to start small, encouraging me to read papers and learn the field of software con-

tracts while explaining everything he could, pushing me toward the driving narrative of “contracts

as effects” until it petered out, leaving us with the fundamental question this dissertation aims to

answer: what is contract verification, and what, exactly, is its role in program execution? That

was, in a real sense, the turning point in our work: the very moment we decided contracts must

be separate evaluators, it became clear that their patterns of interaction were their differences,

leading to our current, process-based approach to modeling runtime verification. Even so, the ideas

presented in this work are the result of years of design, refinement, and exploration, all guided by

Amr’s strict insistence on precise semantics, expressive formalisms, and coffee breaks. Beyond my

1I also decided these meetings would benefit from cookies, so that first semester I made a batch every Thursday
night (or sometimes Friday, during the day) to bring. It still tickles me that this small contribution has become a
long-standing tradition.
2As Jason Hemann may tell you, however, I stayed on as an informal member of Dan’s staff under the title “wartime
consigliere” for a good while after Spring 2012.

iv

research topic, Amr has also been an excellent adviser and teacher, explaining, discussing, and of-

fering a whole cornucopia of interesting ideas and advice ranging from algebraic effects to quantum

computation, but also everything from academic politicking to educational theory. I am fortunate

that I came to work for Amr all those years ago, and I am not certain how things would have

turned out if not for that good bit of luck. All things considered, I still hope to see his master plan

for taking over the (programming) world come to fruition.

Beyond Amr, I had an excellent committee for this work, including Sam Tobin-Hochstadt, a clever

man who seems to have read every programming language paper ever written, and whose brilliant

insights and discussions in our weekly meetings guided immense refinements to the ideas presented

here (and a goodly number of jokes); Jeremy Siek, an IU professor-née-alumnus who has an excellent

knack for poking at the finer details of semantics, ensuring their correctness; and Larry Moss, whose

passion for mathematics and logic has enriched my own.

In addition to my committee, I worked with a number of additional co-authors at IU, including

Dan Friedman, who taught me a great deal about how to indent Scheme (amongst other things);

Jason Hemann, a fellow Texas expatriate who shared my sorrow for Indiana’s lack of breakfast

tacos, and who always seemed willing to convince me I knew what I was doing, even when it was

clear he was the one who did; and, last but certainly not least, Mike Vitousek, a good friend

and excellent collaborator who I worked with to produce many results, including an academic

publication, a series of beverages requiring ABV calculations, a handful of tabletop games, and, in

one particularly strange series of situations, a metaphysical discussion of the totemic Raccoon.

Aside from my published co-authors, countless other people collaborated by being friends, cowork-

ers, confidants, and more. It seems fairest to list them roughly chronologically:

• Lindsey Kuper and Alex Rudnick, who always shared unending generosity, intensive discus-

sions, and kind enthusiasm;

• Aaron Todd, and all the C we wrote together in Operating Systems;

• Cassandra Sparks, who provided thought-provoking challenges and progress & preservation;

• Will Byrd, a jolly good fellow who contributed, amongst other things, the numerous, late-night

conversations about how to succeed in graduate school that set my initial trajectory;

• Chris Frisz, who taught me about the important business of graduate school;

• Claire Alvis, who insisted that I should be held to a higher standard, not a lower one, as her

student and friend;
v

• Kyle Carter, an exemplary friend and fellow student at the start of my dissertation, and,

through some strange set of events, also the end—Halleloo! ;

• Andy Keep, a wizard and drinking buddy of the highest caliber;

• Jaime Guerrero, an excellent friend and likely the suavest gentleman I’ll ever know;

• Spenser Bauman, whose shared love of quoting Futurama and over-enthusiasm for nerd humor

leads me to say: wiggy wam wam wazzle!—also, thanks for the Thin Mints;

• Ethan Swords, my brother, compatriot, and closest friend, whom I was fortunate enough to

share some of my graduate school experience with;

• Andre Kuhlenschmidt, a fellow compiler-hacker whose seemingly-endless quest for knowledge

is encouraging and awing at the same time (and his wife, Laura, for putting up with us);

• Chris Wailes, who seems convinced enough that the world should bend to his will that it just

may;

• Tori Lewis, who helps the rest of us remember sanity by straying from it;

• and Andrew Kent, who makes grad school look far easier than anyone should be able to.

This is, of course, not an exhaustive list: others include the additional members of our long-running

tabletop RPG crew, which variously included, at different times, Peter Fogg, Matt Heimerdinger,

Rajan Walia, Vikraman Choudhury, and Sarah Spall; the many IU undergraduates who became

friends (and subsequently graduated), including Tim Zakian, Michael DeWitt, and Joshua Cox;

IU students, alumni, and associated, including Eric Holk, Ambrose Bonnaire-Sergeant, Michael

Vollmer, Marcela Poffald, David Christiansen, Caner Derici, Praveen Narayanan, Ryan Scott, Bud-

dhika Chamith, and Aaron Hsu, all excellent people who I wish I knew better than I do; Aaron

Turon, Alex Crichton, Nick Cameron, Niko Matsakis, and all the other amazing developers work-

ing on Rust at Mozilla Research; the many, many reviewers that rejected my work with insightful

feedback, ultimately leading to the refinements and corrections that produced the semantics in

Chapters 4–6; my parents, for raising me; and many others who each have helped by discussing

ideas, providing advice and insights, and, in many cases, just sharing good times.

Finally, I must thank my ultimate collaborator: my wife, Rebecca Swords. At this point, she has

discussed more of my ideas and encouraged more of my research (and also potentially proof-read

more of my papers) than anyone else in my life. This dissertation might have been written without

some subset of the people named above, but I can say with certainty that it would not have been

possible without her.

vi

Cameron Swords

A UNIFIED CHARACTERIZATION OF RUNTIME VERIFICATION SYSTEMS AS
PATTERNS OF COMMUNICATION

Runtime verification, as a field, provides tools to describe how programs should behave during exe-

cution, allowing programmers to inspect and enforce properties about their code at runtime. This

field has resulted in a wide variety of approaches to inspecting and ensuring correct behavior, from

instrumenting individual values in order to verify global program behavior to writing ubiquitous

predicates that are checked over the course of execution. Although each verification approach has

its own merits, each has also historically required ground-up development of an entire framework

to support such verification.

In this work, we start with software contracts as a basic unit of runtime verification, exploring the

myriad of approaches to enforcing them—ranging from the straightforward pre-condition and post-

condition verification of Eiffel to lazy, optional, and parallel enforcement strategies—and present a

unified approach to understanding them, while also opening the door to as-yet-undiscovered strateg-

ies. By observing that contracts are fundamentally about communication between a program and

a monitor, we reframe contract checking as communication between concurrent processes. This

brings out the underlying relations between widely-studied verification strategies, including strict

and lazy enforcement as well as concurrent approaches, including new contracts and strategies. We

introduce a concurrent core calculus (with proofs of type safety), show how we may encode each of

these contract verification strategies in it, and demonstrate a proof (via simulation) of correctness

for one such encoding.

After demonstrating this unified framework for contract verification strategies, we extend our veri-

fication framework with meta-strategy operators—strategy-level operations that take one or more

strategies (plus additional arguments) as input and produce new verification behaviors—and use

these extended behavioral constructs to optimize contract enforcement, reason about global pro-

gram behavior, and even perform runtime instrumentation, ultimately developing multiple runtime

verification behaviors using our communication-based view of interaction.

Finally, we introduce an extensible, Clojure-based implementation of our framework, demonstrating

how our approach fits into a modern programming language by recreating our contract verification

and general runtime verification examples.

vii

Contents

List of Figures x

List of Theorems xii

Chapter 1. Introduction 1
1.1. Software Contracts 3
1.2. Variations on Contract Systems 5
1.3. Separating Contract Monitors into their Own Evaluators 7
1.4. Unified Contract System 8
1.5. General Runtime Verification & Verification Meta-strategies 9
1.6. Thesis Statement 10
1.7. Previously Published Work 10

Chapter 2. Software Contracts and Variations Therein 12
2.1. Variations on Verification 14
2.2. Eager Verification 15
2.3. Semi-Eager Verification 17
2.4. Promise-Based Verification 20
2.5. Concurrent Verification 22
2.6. Verification in Review 24

Chapter 3. Uniting Contract Verification Strategies in a Unified Framework 25
3.1. Multi-Strategy Monitoring 26
3.2. Small Examples of Multi-Strategy Monitors 27
3.3. A Unifying Semantics for Contract Verification 29

Chapter 4. λπ
cs: A Language for Implementing Runtime Verification as Patterns of
Communication 35

4.1. The Basics of the λπ
cs Calculus 35

4.2. Language Features 36
4.3. Types & Type Safety 41

Chapter 5. Contracts as Patterns of Communication 51
5.1. Contract Combinators in λπ

cs 51
5.2. Eager Contract Verification—Interrupting the User Evaluator 53
5.3. Semi-Eager Contract Verification—Postponing Contract Verification 60
5.4. Promise-based Contract Verification—Concurrent Checking with Synchronization 64
5.5. Concurrent Contract Verification—Complete Evaluator Decoupling 70
5.6. Finally-Concurrent Contract Verification—Verification Without Synchronization 73
5.7. Additional Verification Strategies in λπ

cs 75
5.8. Mixing Strategies with Contracts in λπ

cs 77

Chapter 6. Beyond Contracts: Verification Meta-strategies 87
6.1. The With Meta-strategy—Performing Additional Operations 88
6.2. The Random Meta-strategy—Probabilistic Contract Enforcement 92
6.3. The Memoization Meta-strategy—Caching Contract Results 93
6.4. The Transition Meta-Strategy—Ensuring State Machines with Verification 94
6.5. Additional Contract Meta-strategies 98
6.6. Contracts as Generalized Runtime Effects 99

viii

Chapter 7. Pisces: An Implementation with Advanced Examples 103
7.1. Basic Clojure Operations 103
7.2. Implementing the Pisces Library 106
7.3. Meta-strategies in Pisces 117
7.4. Case Studies: Advanced Examples using Pisces 119

Chapter 8. Related Works 129
8.1. Software Contracts 129
8.2. Contract Metatheory 133
8.3. Complete Blame and Contract Monitoring 133
8.4. Contract Implementations 134
8.5. Runtime Verification and Instrumentation 134

Chapter 9. Summary & Future Work 137

Bibliography 139

Appendix A. Embedding Findler and Felleisen [36] into λπ
cs 147

Appendix B. λπ
cd: A delay-less Variant of λπ

cs 154

Appendix C. The Pisces Source Code 157

Curriculum Vitae

ix

List of Figures

2.1 A strategy-agnostic syntax for software contract. 14

3.1 Separating an eager, flat contract into a pattern of communication. 31
3.2 Separating an eager, function contract into a pattern of communication. 33

4.1 Syntax definitions for λπ
cs. 36

4.2 Dynamic semantics for λπ
cs. 37

4.3 Term-Language Typing Judgments for λπ
cs. 43

4.4 Unforced terms due to misplaced delay expressions for λπ
cs. 44

5.1 Checking nat/c with eager. 54
5.2 Enforcing nat-pair/ceager on the pair (5, -1). 56
5.3 Enforcing nat-fun/ceager on the function (λ x. x) with input 5 58
5.4 Checking nat/c with semi. The monitoring process is not created until the initiating

evaluator forces the mon result. We indicate the monitoring process with blue . 62
5.5 Checking nat/c with promise. The monitoring process does not communicate its final result

until the initiating evaluator forces the mon result. The expression (f 5) is a stand-in for
additional computation in the initiation process before synchronization. We indicate the
monitoring process with blue . 66

5.6 Enforcing nat-pair/cprom on the pair (5, -1) 68
5.7 Checking nat/c with concurrent. The monitoring process continues concurrently while the

initiating process computes the result. 71
5.8 Checking nat/c with fconc. The initiating and monitoring processes each proceed

concurrently, and the green box indicates an answer configuration. 74
5.9 Lazy contract communication. 77
5.10The aggregate contract verification strategies presented in Chapter 5. 78
5.11Evolution of contract checking during tree traversal for a full binary tree using asynchronous

callbacks. 84

6.1 A state machine ensuring a program checks an iterator has another element before
attempting to retrieve it. 96

7.1 Monitoring strategy implementations in Clojure. 113
7.2 Monitoring meta-strategy implementations in Clojure. 118
7.3 A strategy-parameterized contract for ensuring a binary tree is a binary-search tree. 121
7.4 An implementation of state-transition verification as meta-strategies. 124
7.5 A flow-dependent finite-state machine implementation. 125
7.6 Function timing with a concurrent process. 126

x

A.1A subset of the λCON language from Findler and Felleisen [36]. We have renamed their E
to C and e to c to avoid ambiguity. 147

A.2Embedding procedure for λCON into λπ
cs. 148

A.3Sub-translation relations →→e and →→v for embedding λCON into λπ
cs. 149

B.1 Syntax definitions for λπ
cs. 155

B.2 Dynamic semantics for λπ
cs. 156

xi

List of Theorems

1.1 Example (Using a predicate contract) 3
1.2 Example (Using a pair contract) 4
1.3 Example (Using a function contract) 4
1.4 Example (Semi-eager contract enforcement) 5
1.5 Example (Promise contract verification) 6
1.6 Example (Concurrent contract verification) 6

2.1 Definition (Monitoring Strategy) 14

4.1 Definition (Answer Configuration) 39
4.2 Definition (Well-Formed Configuration) 42
4.3 Definition (Process Typing) 44
4.1 Lemma (Well-Formed Step) 45
4.1 Corollary (Well-Formed Multistep) 45
4.4 Definition (Trace) 45
4.5 Definition (Process States) 45
4.6 Definition (Terminal Configuration) 46
4.7 Definition (Computation) 46
4.8 Definition (Trace Processes) 46
4.9 Definition (Convergence and Divergence) 46
4.2 Lemma (Term Progress) 47
4.3 Lemma (Term Preservation) 47
4.4 Lemma (Concurrent Type Preservation) 47
4.5 Lemma (Uniform Evaluation) 48
4.6 Lemma (Untypeability of Wrong Configurations) 48
4.1 Theorem (Syntactic Soundness) 48
4.2 Theorem (Soundness) 49

5.1 Definition (Software Contract in λπ
cs) 51

5.2 Definition (Eager Verification as a Pattern of Communication) 54
5.3 Definition (The conres helper procedure) 54
5.1 Lemma (Embedding Reduction) 59
5.1 Theorem (Embedding Correctness) 59
5.4 Definition (Semi-Eager Verification as a Pattern of Communication) 61
5.5 Definition (Promise-Based Verification as a Pattern of Communication) . . . 65
5.2 Theorem (Semi-Eager and Promise-Based Local Observational Equivalence) . 69
5.6 Definition (Concurrent Verification as a Pattern of Communication) 70
5.7 Definition (Finally-Concurrent Verification as a Pattern of Communication) . . 74

6.1 Definition (The with meta-strategy) 89
6.2 Definition (The comm meta-strategy) 90
6.3 Definition (The random meta-strategy) 92
6.4 Definition (The memo meta-strategy) 94
6.5 Definition (The state-transition transition and transition-as meta-strategies) . 95
6.6 Definition (The comm/ret meta-strategy) 98
6.7 Definition (The option meta-strategy) 98

A.1 Lemma (Translating Values Yield No Channels or Processes) 150
xii

A.2 Lemma (Embedding Translation Focuses on Redex) 150
A.3 Lemma (Embedding Reduction) 150
A.1 Theorem (Embedding Correctness) 153

xiii

C H A P T E R 1

Introduction

Runtime verification is an execution-based approach to program correctness in which verification

code runs alongside a program at execution time to inspect the program, ensuring it adheres

to a given specification or description of behavior. It allows programmers to express and verify

programmatic properties in terms of runtime operations and correct values flowing through the

program, forgoing the need for compile-time proofs of behavior.

To illustrate this trade-off, consider ensuring that a program always checks that an iterator has

additional values before retrieving a value. To verify this property at compile time, we must either

keep track of each iterator’s state at the type level (e.g., by using a type parameterized by the state

of a given iterator as iterator (hasNext) and iterator (unknown), raising a type error if the program

retrieves a value in the latter case) or extend the compiler itself to reason about correct iterator

usage. Alternatively, we can machine the runtime itself to programmatically enforce correct iterator

use by attaching an additional Boolean flag to each, setting it to true when we ask if the iterator

has another value and false when we retrieve said value, throwing an error if we retrieve a value

when the iterator has the false flag. This runtime-based approach allows us to programmatically

ensure each individual run is correct without encoding correctness as a compile-time artifact.

Moreover, in languages without rich type systems (e.g., Python, Ruby, Racket, and Clojure), run-

time-based verification can stand in for compile-time types, ensuring each function behaves cor-

rectly. The functional programming community, in particular, have adopted the notion of runtime

property verification in the form of software contracts to ensure program correctness. In this work,

we will start with software contracts in their many forms, expanding and generalizing software

contract verification and, ultimately, building a general runtime verification and inspection system.

Contracts. Originally presented as part of the Eiffel language [66], software contracts describe

a mechanism for specifying local program correctness at loop, function, and module boundaries,

allowing programmers to create complete, runtime-checked program specifications from individual

components. This piecewise construction of specifications suggests that software contracts are an
1

ideal foundation for building a framework for runtime verification, and thus we use it as our starting

point.

Findler and Felleisen [36] brought contracts to higher-order, functional programming (and, in partic-

ular, the Racket programming language [39]), introducing and defining a semantic core for contract

verification: in their simplest form, programmers form contracts from writing predicates (i.e., func-

tions that return Boolean values) that verify properties on values flowing through the program.

When a predicate returns a false value, the program terminates and reports the incorrect value to

the programmer.

Programming, however, is more complex: programs utilize higher-order functions, effectful opera-

tions, massive data structures, lazy evaluation mechanisms, and more, and contract systems must

address this added complexity. For higher-order functions, we must delay contract enforcement [36];

effectful operations may affect values that were previously checked; massive data structures may

be prohibitively expensive to inspect; and over-evaluating input may change program behavior.

In addition to these specific solutions, researchers have proposed myriad contract enforcement

strategies in response to these rising complexities, including lazy monitors [15, 22], concurrent

monitoring systems [26], optional enforcement [29], and probabilistic contract verification [50, 68].

Each of these solutions solve some, but not every, programmer concern in contract verification.

Moreover, these systems often appear as isolated, incompatible alternatives, fixing the evaluator

interaction pattern in the host language, providing a single enforcement strategy to the programmer.

Despite appearances, however, this cornucopia of verification systems share a common core: check-

ing that a given program fragment satisfies a contract requires executing some verification code,

and this execution is fundamentally distinct from the execution the original program fragment.

If we separate these two code fragments, we can view the verification portion of the program as

a separate process, allowing each program to proceed independently and synchronize at specific

points. This separation leads to a critical insight: if we preserve this distinction, these variations

on verification correspond to variations on evaluator interactions, and we may directly encode each

into a unified system, allowing programmers to vary monitor behavior on a per-contract basis,

choosing the appropriate behavior for each contract and, ultimately, extending contract behavior

to encompass other runtime verification systems. Moreover, this separation allows us to model

other runtime verification systems, such as ensuring a program adheres to behavioral models (such

2

as ensuring a programmer invokes hasNext on an iterator before retrieving the next element) and

function profiling, in the same framework.

1.1. Software Contracts

Software contracts are pervasive in modern functional programming, from Racket’s ubiquitous usage

to Liquid Haskell and Typed Racket’s adoption of refinement types. In their usual presentation,

contract systems define a core calculus and extend it with a particular flavor of software contract

verification, typically including the following forms:

E := x | V | E E | if E then E else E | E binop E

| (E,E) | fst E | snd E | raise | mon E E

V := λ x. E | n | true | false | (V, V) | string

Most of these operations are standard: we have variables, values, application, branching, infix

binary operations, pairs, and errors1. The monitor form, included as the last form of E, performs

runtime monitor installation. These monitors are most typically defined via contract combinators,

specialized constructors that accept functions or other contracts as input and produce contracts.

The simplest combinator is pred/c, the predicate (or flat) contract combinator whose input is a

predicate and whose output is a contract that enforces it. We can use this to ensure a value is a

natural number:

nat/c := pred/c (λ x. x ≥ 0) (1)

To evaluate programs in this calculus, we also need dynamic semantics to describe how mon should

proceed2. We will build this piecemeal, matching on the contract by combinator:

mon (pred/c F) V → if F V then V else raise (2)

When we monitor a predicate contract, we check if the predicate holds for the provided value. If it

does, we return that value. If it does not, we raise an error. For example, we can check nat/c:

1For now, we treat errors as ‘unit’-raised errors. Later we will extend them to provide more information about the
error that occurred.
2We elide the other semantics and refer the interested reader to Types and Programming Languages for their imple-
mentation [73].

3

Example 1.1 (Using a predicate contract).

mon nat/c 5

→ if (λ x. x ≥ 0) 5 then 5 else raise
→ if 5 ≥ 0 then 5 else raise
→ if true then 5 else raise
→ 5

We can also define combinators over structures, such as pair/c E E for pair contracts:

mon (pair/c C1 C2) V → (mon C1 (fst V),mon C2 (snd V)) (3)

This contract combinator takes two sub-contracts and applies the first to the first element of the

pair and the second to the second element of the pair. For example, we might check if we have a

pair of natural numbers:

Example 1.2 (Using a pair contract).

fst (mon (pair/c nat/c nat/c) (5, 6))
→ fst (mon nat/c (fst (5, 6)) , mon nat/c (snd (5, 6)))

→∗ fst (mon nat/c 5 , mon nat/c (snd (5, 6)))

→∗ fst (5, mon nat/c 6)

→∗ fst (5, 6)
→∗ 5

The last combinator we will introduce for now is fun/c, the function contract combinator :

mon (fun/c C1 C2) F → λ x. mon C2 (F (mon C1 x)) (4)

This contract ensures that each input to the function satisfies the specification given by C1 (called

the pre-condition) and each function output satisfies the specification given by C2 (called the

post-condition). Unlike the previous combinators, this monitoring results in a pair of suspended

monitors: unlike predicate and pair contracts, a function contract does not have all of the infor-

mation necessary to verify its input and output. Rather than attempting to statically verify that

every path through the program satisfies these contracts, we check each input and output that

occurs over the course of the program, verifying each input invocation site and output result. To

demonstrate this mechanism, consider ensuring a procedure works over natural numbers (i.e., takes

natural numbers as inputs and produces natural numbers as outputs):

4

Example 1.3 (Using a function contract).

(mon (fun/c nat/c nat/c) (λ n. 1)) 5

→ (λ x. mon nat/c ((λ n. 1) (mon nat/c x))) 5

→ mon nat/c ((λ n. 1) (mon nat/c 5))

→∗ mon nat/c ((λ n. 1) 5)

→∗ mon nat/c 1

→∗ 1

1.2. Variations on Contract Systems

As discussed above, there are myriad variations on the eager-style contract verification system we

present above, each of which appear in the software contract verification literature as modifications

to the calculus in the previous section. In this section, we introduce three such variations, briefly

describing their verification behavior and contrasting it with the eager verification mechanism above

(and postponing further details until Chapter 2). We focus on these strategies in particular due to

their broad utility, straight-forward explanations, and proliferation in the literature.

Semi-Eager Verification. The software contract system presented in §1.1 exhibits potentially

surprising behavior: Example 1.2 and Example 1.3 both perform contract checks for values that

do not impact in the final program result. In Example 1.2, the second element of the pair, 6,

is never used, and, similarly, the function input 5 is never used in Example 1.3. If these values

had not been natural numbers, however, they would each have raised errors in the program. In

programs where over-evaluation might produce divergence or performance degradation, this can

make contracts prohibitively expensive (such as traversing a binary tree to inspect each element

during element insertion) and even impossible to check (such as verifying that a stream contains

only of natural numbers).

Hinze et al. [52] propose a lazier monitoring mechanism to address these issues: unlike the software

contract system in §1.1, this system only checks contracts for values used in the final program result.

To demonstrate this behavior, consider the following examples:

Example 1.4 (Semi-eager contract enforcement).

fst (mon (pair/c nat/c nat/c) (5, -1)) →∗ 5 (5)

(mon (fun/c nat/c nat/c) (λ n. 1)) -1 →∗ 1 (6)

5

Because -1 is not used to determine the final program result in either of these examples, the

programs terminate without error.

Promise-Based Verification. A second variation of software contract enforcement utilizes com-

putational promise behavior: any time a monitor enforces a contract, the programmer receives a

promise to the contract result, and they can retrieve it (or not) as they see fit. For example, a user

might initialize a contract, perform a secondary computation, and then verify the contract result.

Example 1.5 (Promise contract verification).

User Process Monitoring Process

let x = mon nat/c -1
k = gen-new-encryption-key

in encrypt k (force x)

→ let x = ⟨box⟩ update-box (if (λ x. x ≥ 0) -1 then -1 else error)
k = gen-new-encryption-key

in encrypt k (force x)

→∗ let x = ⟨box⟩ update-box error
k = encryption-key

in encrypt k (force x)

→∗ encrypt encryption-key (force ⟨box⟩)

This allows programmers to utilize multi-processor architectures to provide performance improve-

ments over the interleaving monitoring system presented in §1.1. More importantly, it describes a

variation of how to verify contracts: we may check them in a separate process while the program

continues. It also allows programmers to control when and if they get the contract result, where

unforced promises will not produce errors in the user process.

Concurrent Verification. A third variation, originally proposed by Dimoulas et al. [26] as Future

Contracts, performs contract verification in parallel for predicate contracts, synchronizing with the

program at “effectful” points (such as input/output events) to report any violations. For example,

consider a program that checks a predicate contract and synchronizes with the monitor at print

operations:

6

Example 1.6 (Concurrent contract verification).

User Process Monitoring Process

let x = mon nat/c -1 in display (add1 x)

→ let x = -1 in display (add1 x) if (λ x. x ≥ 0) -1 then done else report error

→ display (add1 -1) if -1 ≥ 0 then done else report error

→ display 0 if false then done else report error

→∗ seq sync (print 0) ⇐⇒ raise error

→∗ raise

The initial program continues its computation until synchronization, and then the error occurs.

In general, the monitoring process manages a queue of pending contracts, reporting any violations

during synchronization. This allows programmers to utilize parallelism without explicitly managing

verification results.

Other Variations. These are not the only variations; for example we can also verify contracts in

each of the following ways:

• lazy contract verification, which only enforces contracts as the user evaluator completely ex-

plores each monitored term;

• probabilistic contract verification, which probabilistically ensures contracts adhere to their

pre- and post-conditions for random inputs;

• and best-effort checking, which only reports a contract result if the contract terminates before

the program completes.

As with the verification strategies we describe above, these variants provide programmers with

flexibility and utility to address specific situations.

1.3. Separating Contract Monitors into their Own Evaluators

In both promise-based and concurrent verification, we extract the contract monitor into a separate

process. It turns out, however, that we may model even the naïve contract system presented in

§1.1 with interacting evaluators, wherein the contract monitor is a separate, concurrent process

that interacts with the user program to report the verification result. To illustrate this behavior,

consider evaluating the expression

5 + mon nat/c (1 + 2) (7)

7

via the rules in §1.1. As before, we evaluate the monitored expression (1 + 2), then the monitor

mon nat/c 3, and finally the result 5 + 3, yielding 8. This suggests that monitoring proceeds as a

separate evaluator, performing contract verification in isolation from the user program.

Dimoulas et al. [26] first observe this separation in order to take advantage of computational paral-

lelism for increased performance and Disney et al. [31] later use a similar approach to ensure contract

non-interference. More than that, however, separating contract verification into a different evaluator

allows us to discuss the fundamental nature of software contract verification, allowing us to inspect

how and when each contract verification strategy interacts with the user program. For example,

eager contracts (presented in §1.1) postpone the user program while evaluating the monitored ex-

pression, resuming the initial computation with the verification result; semi-eager contracts do not

suspend the user program until the user program requires the contract result; and promise-based

contracts synchronize with the user program during specified events; and promise-based contracts

synchronize when the user program demands them. Ultimately, this separation allows us to explore,

compare, and combine contract verification strategies in a unified way.

1.4. Unified Contract System

Each of the software contract verification systems presented in §1.1 and §1.2 have immense utility,

and a programmer may require each verification technique over the course of a program. For

example, a programmer may wish to check that a tree is a binary-search tree in each of the

following ways:

• via an O(n) traversal (e.g., after initial construction);

• by locally checking the parts the program uses (e.g., to preserve asymptotics during a BST-in-

sertion routine);

• via an O(n) promise-based system (e.g., when the program is performing other operations in

the main process);

• and via an O(n) concurrent traversal (e.g., to ensure we read a sorted tree from a file while

the program continues).

Programmers should not settle for a system that does not support each of these strategies; they

should be able to use any strategy, and move freely between them between.
8

In this thesis, we present a single, unified framework that provides each of these verification strat-

egies (and more), allowing programmers to select the best strategy (or combination of strategies)

on a per-contract basis. Furthermore, we demonstrate that this unification and the principled

interactions of combined strategies follow from the fundamental insight presented in the previous

section: each software contract monitoring strategy may be directly expressed in a unified frame-

work as a description of internal verifier behavior (i.e., how the verifier proceeds) and a pattern of

communication (i.e., how the verifier interacts with the user program).

1.5. General Runtime Verification & Verification Meta-strategies

In addition to allowing programmers to select individual verification strategies, we also develop

general runtime verification (such as ensuring a program adheres to a finite-state machine of behav-

ior) using meta-strategies, or strategy operators that take and return new strategies. In general, a

meta-strategy may augment a basic strategy’s behavior, giving programmers additional flexibility

and specialization. These meta-strategies may be manually implemented by the programmer on a

per-contract basis, but providing them as part of the unified framework eases developer overhead,

and allows us to reason about them in a framework context.

These meta-strategies include the following (among others):

• comm, which takes a strategy and a channel. After enforcing the contract, this strategy will

communicate the result across the channel. The goal is to suppose, e.g., lazily verifying tree

fullness checking without manually constructing the side-channel system presented by Swords

et al. [80].

• memo, which takes a strategy and a hash map. We store the verification result in the given

map, and, if the expression is already in the hash map, the verifier skips enforcement, using

the previous result. This allows programmers to avoid unnecessary contract recomputation

over the course of execution.

• random, which takes a strategy and a number 0 ≤ e ≤ 1. During contract enforcement,

we probabilistically check the contract, using e as the check rate (and thus skipping some

enforcements).

• and transition, which allows programmers to specify state transitions and ensure the program

follows them [30].
9

As we will demonstrate, we can use these meta-strategies in a variety of ways, including augmenting

contract performance, expanded contract verification, and refocusing the underlying verification

framework to support generic runtime verification, including ensuring instruction execution order

(e.g., by maintaining a state-machine for behavior) and function-level time profiling.

1.6. Thesis Statement

With the above background, we can state the thesis of this dissertation:

Runtime verification systems may be expressed as a collection of separate, concurrent

processes that interact with the user program, and variations on verification systems

may be encoded as variations on patterns of communication to provide programmers

with general, practical runtime verification tools.

My dissertation will defend this thesis as follows:

• runtime verification systems may be expressed as separate, concurrent processes that systemat-

ically interact with the host (or user) program: we demonstrate how the standard higher-order

contract systems may be directly modeled as program interactions (Chapter 3) and formally

define a straightforward, CSP (Concurrent Synchronous Process) calculus λπ
cs for encoding

such interactions (Chapter 4).

• variations on verification systems may be expressed as variations of interactions: we will

demonstrate how we may express variations on runtime verification from across the litera-

ture [22, 26, 27, 30, 33, 80] in λπ
cs (Chapter 5). We will also extend this approach to additional

verification techniques, including state systems and other meta-strategies (Chapter 6).

• general, practical runtime verification tools: we will defend the generality of this approach by

presenting an implementation built in Clojure that utilizes the JVM parallelization facilities

(Chapter 7).

1.7. Previously Published Work

The material in this dissertation stems from research done jointly with multiple collaborators,

some of which appears in the following previously-published papers, both directly (e.g., the initial

encoding model presented by Swords et al. [80]) and indirectly (e.g., the algebraic effect system
10

presented by Kiselyov et al. [60] and the secondary blame-tracking system presented by Vitousek

et al. [83]).

• Cameron Swords. Strategy-Based Contract Monitors, Monitoring Meta-strategies, and Run-

time Instrumentation. Draft, 2017.

• Cameron Swords, Amr Sabry, and Sam Tobin-Hochstadt. An Extended Account of Contract

Monitoring as Patterns of Communication. To Appear, Journal of Functional Programming,

2018.

• Michael M. Vitousek, Cameron Swords, Jeremy G. Siek. Big Types in Little Runtime: Open

World Soundness and Collaborative Blame for Gradual Type Systems. In Symposium on

Principles of Programming Languages, 2017.

• Cameron Swords, Amr Sabry, and Sam Tobin-Hochstadt. Expressing Contract Monitors as

Patterns of Communication. In International Conference on Functional Programming, 2015.

• Oleg Kiselyov, Amr Sabry, and Cameron Swords. Extensible Effects. In Haskell Symposium,

2013.

11

C H A P T E R 2

Software Contracts and Variations Therein

synopsis
In this chapter, we introduce and discuss the technical background that informs the rest

of the dissertation. We begin with software contracts and contract verification (§2.1), and

proceed by defining and discussing the behavior of multiple variations on contract veri-

fication, including eager (§2.2), semi-eager (§2.3), promise-based (§2.4), and concurrent

(§2.5).

Runtime systems often live outside of the system they are inspecting, using different languages and

systems to monitor a specific program’s behavior. Software contracts forgo this need, allowing pro-

grammers to write their specifications in the same language as the underlying program, expressing

and verifying properties about their program within the same context and runtime system as the

program itself.

At their core, software contracts are procedures written in the host language that verify program

behavior by inspecting values flowing through the program, ensuring these values adhere to specific

properties (such as being a natural number, a list of a certain length, or a binary-search tree). To

verify a contract, we execute the contract’s associated predicates(s) on the monitored values, and,

after execution, the contract assertion either returns the input (potentially modified to contain

more monitors) or raises an error. In aggregate, these contracts verify that the underlying user

program behaves as intended.

The Essence of Contract Monitors. To begin, consider a function that simulates rolling an

x-sided die:

λ x. (rand-nat x) + 1 (8)

The procedure uses rand-nat, which expects some natural number greater than 1 and returns a

number between 0 and that value (exclusive), and adds 1 to the result. It would be ideal to ensure

that x is greater than zero before passing it to rand-nat, and, using pred/c from Chapter 1, we can
12

write a contract to verify this property:

λ x. rand-nat (mon (pred/c (λ n. n ≥ 1)) x) + 1 (9)

In this example, the rand-nat function takes some argument x and verifies the contract

pred/c (λ n. n ≥ 1)

on the value. As before, the pred/c form takes a predicate and yields a predicate contract, which

returns the monitored value if the predicate returns true and raises an error if it returns false. This

contract, then, will ensure that x is at least 1. But this leaves lingering questions about verification:

• Should we treat contracts as specifications to verify, ensuring values adhere to these contracts

regardless of their usage in the program (e.g., if rand-nat works without error for a negative

number, should we still report an error)?

• Should the user program wait while contract verification occurs (e.g., should we ensure x has

the correct bounds before the underlying, user program may proceed)?

• Should the user program have its own role in contract verification (i.e., asking for the contract

result in addition to performing its computation)?

As we saw in the introduction, these questions do not have concrete “yes” or “no” answers, but

represent gradient of possible verification strategies. Moreover, these answers may change as pro-

grams increase in complexity; for example, consider checking that each element of a pair is a natural

number before generating a random number based on the first element:

nat/c ∆
= pred/c (λ n. n ≥ 0) (10)

rand-nat (fst (mon nat/c 5,mon nat/c -1)) (11)

Should Eqn. 11 raise an error (because -1 is not a natural number)? While the invalid value is

immediately discarded, and thus will not cause the program to be incorrect, it is also possible that

ensuring the contract (and signaling the subsequent error) will reveal additional problems to the

programmer.

It is not sufficient to select a single set of answers to these questions. Adding software

contracts to a program fundamentally changes that program’s behavior. While it is possible to

only write idempotent contracts that do not modify their input or change the program’s meaning

as part of verification [22], this restricted usage eschews the fundamental utility of contracts as

language-level procedures [34] that can interact with the full language runtime, and programmers
13

E := x | V | E E | if E then E else E | E binop E | (E,E) | fst E | snd E
| error | mon E E | pred/c E | pair/c E E

V := λ x. E | n | true | false | unit | (V, V) | pred/c V | pair/c V V

Figure 2.1. A strategy-agnostic syntax for software contract.

must be free to utilize this additional power how and when they see fit. In this context, however,

when contracts are free to change a program’s behavior with over-evaluation, divergence, side

effects, and even concurrency, programmers must have the ability to vary how and when to verify

these contracts.

2.1. Variations on Verification

Contract verification is typically expressed as part of a fixed verification system, extending a core

calculus with a single, fixed contract verification mechanism describing how and when to verify

contracts [22, 25, 26, 36, 52]. In this thesis, we refer to these verification mechanisms as monitoring

strategies:

Definition 2.1 (Monitoring Strategy). Given a contract and some term to monitor it on, a mon-

itoring strategy describes how and when to verify the contract on the term.

Our goal is to introduce a unified verification system which supports multiple contract monitor-

ing strategies and, to this end, we start by introducing a number of such strategies, laying the

groundwork for our later abstraction. We work from the single, strategy-agnostic syntax previously

presented in Chapter 1, reproducing it in Figure 2.1. This calculus follows the core calculi pre-

sented by Degen et al. [22] and Dimoulas and Felleisen [25], which extend a standard, call-by-value

λ-calculus [1] (variables x; values V ranging over lambda abstractions, numbers, pairs, errors1, and

more) with contract combinators and verification forms:

• mon E1 E2, which installs a runtime monitor to verify the contract E1 on the expression E2

such that the monitor either returns the monitored value or raises an error;

• pred/c E, the predicate contract combinator, where E must be a predicate function;

• pair/c E1 E2, the pair contract combinator, where E1 and E2 are subcontracts verified on the

first and second elements of the monitored pair (respectively).
1Our errors currently raise “empty” errors. We will later extend these errors to include additional blame information
to help programmers debug contract violations.

14

These language-level combinators forms allow us to define new contracts, such as nat/c from Eqn. 10.

Using nat/c and the pair contract combinator, we may also define a contract that will verify its input

is a pair of natural numbers:

nat-pair/c := pair/c nat/c nat/c (12)

Then, we may once again ask what it means to evaluate the following:

mon nat/c 5 →∗ ? (13)

rand-nat (fst (mon nat-pair/c (5, -1))) →∗ ? (14)

To determine the answer, we must select some semantic definition of contract verification, and, in

doing so, we will also (perhaps unintentionally) answer the questions about the nature of verification

we raised above. Over the rest of the chapter, we will introduce a number of mon semantic

reductions to explore four contract verification strategies.

2.2. Eager Verification

Eager contract verification, first presented by Meyer [66], brought into the functional world by

Findler and Felleisen [36], and repeatedly refined [22, 23, 27, 35], treats contracts as fully-verified

specifications, evaluating the monitored term as necessary while the user program waits for the

verification result (even if the user program would not normally evaluate it). In its purest form,

we can define eager contract verification as:

mon (pred/c Vc) V → if Vc V then V else error (15)

mon (pair/c Vc1 Vc2) (V1, V2) → (mon Vc1 V1,mon Vc2 V2) (16)

In the case of predicate contracts, we take the input term, reduce it to a value, and then determine

if the predicate holds; for pair contracts, we destruct the (evaluated) pair, proceeding via recursion.

To demonstrate this behavior, consider the following trace monitoring “nat/c” on the term “2 + 3”

before passing the result to a procedure:

(λ x. 10) (mon nat/c (2 + 3))

→ (λ x. 10) (mon nat/c 5)

→ (λ x. 10) (if (λ n. n ≥ 0) 5 then 5 else error)
→∗ (λ x. 10) (if true then 5 else error)
→ (λ x. 10) 5

→ 10

15

When the evaluator encounters the monitoring form (line 3), the user program (attempting to

apply “λ x. 10” to “2 + 3”) suspends, waiting while the contract system verifies the contract.

After contract verification, the monitoring reduction yields control back to the user portion of

the program with the monitored value (in this case, “5”), which is immediately discarded by the

application (line 6). If 5 had not passed the contract, however, the monitor would subvert the user

program control to raise an error.

This contract verification strategy treats contracts as concrete specifications to fully verify over a

program’s execution, regardless of the program’s execution trace (e.g., how it uses the contracted

terms). This means that even unused values will raise contract violation errors. For example,

consider reducing Eqn. 11 under an eager monitoring strategy:

fst (mon nat-pair/c (5, -1))
→∗ fst (mon nat/c 5,mon nat/c -1)
→∗ fst (5,mon nat/c -1)
→∗ fst (5, error)
→∗ error

When we verify a pair contract with an eager monitoring strategy, we immediately monitor each

subcontract on the appropriate sub-component of the pair, interrupting the user program to com-

pletely verify the subcontracts. In this case, “-1” is not a natural number, and thus the entire

program terminates with an error even though the second element of the pair is not part of the

final program result.

Eager verification signals errors for unused values, which comes with a number of potential draw-

backs:

(1) Treating contracts as fully-verified specifications inhibits verifying properties on infinite struc-

tures. For example, ensuring that each element of an infinite stream is a natural number will

cause the monitor will diverge.

(2) Suspending the user program while the monitor proceeds can be computationally prohibitive.

For example, consider

mon prime/c (23763 + 567) (17)

The user program waits while the contract monitor performs a primality check, potentially

bottlenecking the underlying application. Similar situations may occur when, e.g., ensuring

each element of a hash map adheres to a specific property. If eager verification is the only
16

monitoring strategy available, programmers may find it too expensive to verify rich properties

of their programs.

(3) Interrupting the user evaluator and over-evaluating inputs may produce different program

behavior than the original, unmonitored program: contracts are effects, and may not always

preserve the underlying program’s meaning [72]. For example, consider the following predicate

(monitoring a function value):

pred/c (λ f. (f 5) = 0)

If the function diverges on input 5, but otherwise behaves correctly over the course of the

program, then monitoring this contract will cause divergence in a program that may have

otherwise terminated.

These drawbacks stem from the fundamental assumption of eager contract verification: if we accept

contracts as concrete specifications that must be completely verified as the user program encounters

them, we ensure that each contract is totally monitored [27] at the cost of potential verifying (and

potentially evaluation) more that necessary.

2.3. Semi-Eager Verification

The over-evaluation of eager verification suggests an immediate alternative: we may maintain the

user program suspension during verification, but postpone contract verification until the program

demands the monitor’s result. Hinze et al. [52] originally present this semi-eager verification strat-

egy in order to address these problems with eager monitors; Degen et al. [22] later define semi-eager

verification (including blame information) in the context of lazy programming languages; and Find-

ler et al. [37] use a similar less-eager verification mechanism for contract verification.

In order to provide semi-eager contract verification, the monitoring reduction must “box up” the

contract and the monitored expression, suspending contract verification until the user evaluator

demands the value. We encode this mechanism as follows, representing contract-expression pairs

as ⟨contract | expression⟩:

mon V1 V2 → ⟨V1 | V2⟩ (18)

When the user evaluator demands the value (e.g., the boxed expression occurs in evaluation po-

sition), the evaluator suspends the user program and verifies the contract, resuming the program

with the monitored value if the contract holds or raising an error if it does not. We can achieve this
17

result by specializing the evaluator to perform contract verification when the program requires the

boxed expression (e.g., ⟨V1 | V2⟩ V3 will need to unbox the operator and perform verification). This

evaluation mechanism is reminiscent of call-by-name evaluation, where some subset D of evaluation

contexts D are “forcing” contexts [6] that trigger contract verification:

D[⟨pred/c Vc | V ⟩] → D[if Vc V then V else error] (19)

D[⟨pair/c Vc1 Vc2 | V ⟩] → D[(mon Vc1 (fst V),mon Vc2 (snd V))] (20)

To illustrate semi-eager verification, consider evaluating the pair example from Eqn. 11 (without

the rand-nat operator):
fst (mon nat-pair/c (5, -1))

→∗ fst ⟨nat-pair/c | (5, -1)⟩
→∗ fst (mon nat/c 5,mon nat/c -1)
→∗ fst (⟨nat/c | 5⟩, ⟨nat/c | -1⟩)
→ ⟨nat/c | 5⟩
→ if (λ n. n ≥ 0) 5 then 5 else error
→∗ 5

This example illustrates the primary behavioral difference between eager and semi-eager verifica-

tion: in semi-eager verification, contracts are no longer fully-verified specifications that we must

ensure, and the contract system will only verify contracts as the user program uses them. This

monitoring variant allows programmers to trust that any value used in the program result adheres

to its contract(s) without risking over-evaluation. It checks precisely those values we access in a

stream or hash-map in, allowing us to preserve program behavior and localized contract verification.

As with eager verification, semi-eager verification has its own drawbacks:

(1) Semi-eager verification is not faithful to the contract specification [22]: only those values the

program uses will have their contracts verified and, as a result, we cannot trust our contracts

as full specifications. This behavior may lead to unobserved program errors (such as the

example above).

(2) Semi-eager verification is not idempotent [22]: depending on how we implement contract

verification, it is possible that these two terms may have different behaviors:

fst (mon nat-pair/c (5, -1))
fst (mon nat-pair/c (mon nat-pair/c (5, -1)))

18

If monitoring the outer contract demands the contracted values ⟨nat/c | 5⟩ and ⟨nat/c | -1⟩, then

the second expression will raise an error, while the first will return 5. This strange behavior

may mislead programmers using a semi-eager contract system2.

(3) Semi-eager verification can lead to a “verification anti-pattern”: in semi-eager verification,

programmers may find themselves evaluating terms expressly for contract verification. This

anti-pattern manifests in our previous example by taking the second element of the pair in

order to ensure contract verification, even if we will not otherwise require it.

(4) This verification technique still suspends the user evaluator while verification proceeds; it just

does so at a finer-grained level.

As we can see, semi-eager contract verification is not a catch-all solution: while we may use semi-ea-

ger monitors to check a different set of contracts than eager monitors, we have fewer guarantees

and a similar level of user evaluator interruption across the program.

An Aside on Function Contracts. Function contracts, created with the function contract com-

binator fun/c, perform contract verification on a function, ensuring its input adheres to the given

pre-condition and its output adheres to the given post-condition. These contracts present a unique

problem when compared to other structural contracts: unlike pairs or larger structures, it is, in

general, impossible to ensure that a procedure behaves correctly for every input, as they typically

work over infinite input spaces. To avoid this problem, Findler and Felleisen [36] propose an alter-

native approach to function contracts wherein a function contract yields a new function, wrapping

the monitored function in pre- and post-condition checks (where Vc1 is the pre-condition, Vc2 is the

post-condition, and V is the monitored function):

mon (fun/c Vc1 Vc2) V → λ x. mon Vc2 (V (mon Vc1 x)) (21)

For example, we can verify that a function takes and returns only natural numbers:

mon (fun/c nat/c nat/c) (λ n. n + 5) → λ x. mon nat/c ((λ n. n + 5) (mon nat/c x)) (22)

This definition of fun/c is “natively” semi-eager: the implicit delaying nature of λ suggests we should

check only those values that flow in and out of the function. This is not, however, the only solution;

other alternatives to verification include:

• Probabilistic verification [33, 50], wherein the contract system generates sample inputs and

verifies that the monitored procedure adheres to its pre- and post-conditions for these inputs.

2Owens [72] identifies a similar problem with pairs of functions in eager verification.

19

• Static contract verification [33, 69, 86], which performs static analysis to ensure that the

procedure adheres its contract. This approach also allows systems to erase contracts that will

provably hold.

For the moment, we forgo these alternatives for our semantic presentation so that function con-

tracts resemble their structural counterparts, taking some structure (e.g., a function) as input and

returning that same structure with contracts nested in it as the verification result, but we will

revisit these alternatives in later chapters.

2.4. Promise-Based Verification

In order to address the burden of evaluator interruption, Dimoulas et al. [26] introduce the notion

of future contracts, presenting a concurrency model with a user and a monitoring process, wherein

the user process communicates contracts and expressions to the monitoring process and the mon-

itoring process concurrently performs contract verification. We may replicate this multi-process

approach by replacing the “boxing” and “unboxing” of semi-eager verification with promises [41]

and inter-process communication, written [⟨e⟩]3:

mon (pred/c Vc) V → seq (spawn (if Vc V then write ι V else write ι error)) [⟨read ι⟩]

(23)

mon (pair/c Vc1 Vc2) (V1, V2) → seq (spawn (write ι (mon Vc1 V1,mon Vc2 V2))) [⟨read ι⟩] (24)

For predicate contracts, we create a new process (via spawn) that evaluates the contract and either

writes the original value or an error across some channel ι. For pair contracts, we decompose the

contract and monitor each subcontract, writing the final result across some channel ι.

We have taken a number of liberties in this encoding of promise-based verification, assuming a

process-creation operation spawn, channels ι with channel communication, “promise boxes” [⟨e⟩] that

we may later force with the force operation, and our ability to write errors directly across channels.

We take these liberties for presentation purposes, and address each of them in our semantic model

in Chapter 5.

As for usage, consider a program that ensures some value is a natural number, generates a new en-

cryption key, and then uses that key to encrypt the natural number. If generating a new encryption

3Here, e is the expression to retrieve the computational result when forcing the promise

20

key is computationally intensive, it may be worthwhile to verify this contract concurrently:

User Process Monitoring Process

let msg = mon nat/c -1
in encrypt (gen-new-key) msg

→∗ let msg = [⟨read ι⟩]
in encrypt (gen-new-key) msg

if (λ n. n ≥ 0) -1
then write ι -1
else write ι error

→∗ encrypt (gen-new-key) [⟨read ι⟩] →∗ write ι error

→∗ encrypt V (force [⟨read ι⟩])

→∗ encrypt V (read ι)

→∗ error

The user evaluator communicates the contract and expression to a concurrent process before re-

suming its computation, and later retrieves the concurrent monitoring process’s verification result.

Unlike semi-eager verification, promise-based monitors do not interrupt the user evaluator during

verification, allowing the user process to proceed concurrently with contract monitor. When the

user program requires the contract result, the evaluator forces the promise, retrieving it4. This ap-

proach reveals a potential optimization in multi-processor settings: the user evaluator may proceed

in parallel with the monitoring evaluator, allowing the user evaluator to spend less time awaiting

monitoring results and potentially yielding program speed-up.

As with our other variations, this decision not to view contracts as concrete specifications and

remove user program suspensions has its own potential issues:

(1) Promise-based verification falls victim to some of the previous concerns of semi-eager verifica-

tion (including lack of idempotence and verification anti-patterns).

(2) The user evaluator may end up “wasting cycles” on speculative computation, performing

operations that the program must discard after a contract signals an error, or, worse, that the

program must roll back (e.g., in the case of effects such as file output).

(3) The cost of communication and promises may dominate program performance.

(4) Effectful contracts (e.g., a contract that maintains internal state) no longer have a guaranteed

execution order, and may yield unexpected and unpredictable results. For example, consider

4In their original presentation, future contracts synchronized whenever the user program performed effectful opera-
tions, requiring machinery wrapping each effect.

21

a monitor that updates a reference before ensuring its input is a natural number:

pred/c (λ x. seq (update-ref ref (!ref + x)) (x ≥ 0)) (25)

If the user program relies on ref, the programmer may be unable to predict the program’s

outcome. Worse, if update-ref is not atomic [48], this behavior may lead to different results

depending on process scheduling.

As with eager and semi-eager verification before it, we can see that promise-based verification is

also not a perfect-fit solution: although it addresses some of our problems with both eager and

semi-eager verification, a promise-based verification strategy introduces its own set of programmer

concerns.

2.5. Concurrent Verification

In an attempt to remove some of the semantic complexity of the previous verification approaches,

it is worthwhile to consider asynchronous concurrent verification, wherein the contract verification

system forgoes explicitly reporting the result to the user evaluator. Instead, the monitoring process

verifies the contract concurrently, either terminating silently if the contract holds or raising an error

if it does not5:

mon (pred/c Vc) V → seq (spawn(if Vc V then V else error)) V (26)

As with promise-based monitoring, we create a new process to monitor the contract. Unlike

promise-based monitoring, however, we return the original value to the user evaluator without

creating a promise, allowing both computations to proceed without further synchronization.

Consider the following usage:

User Process Monitoring Process

let x = mon nat/c -1 in (2 + 4) + x

→∗ let x = -1 in (2 + 4) + x if (λ n. n ≥ 0) -1 then unit else error

→ (2 + 4) + -1 if -1 ≥ 0 then unit else error

→ 6 + -1 if false then unit else error

→ 5 error

5We elide pair-based contract verification for concurrent monitors for simplicity. Such a definition would follow the
promise-based definition in Eqn. 24.

22

This program may either produce “5” or raise an error. Which result should we expect? More

specifically, if the user evaluator does not explicitly ask for the contract result, should the language

runtime await it anyway? Either answer is valid, and each has further implications.

If we do not wait, we get a concurrent, "best-effort" checking system. In the above

example, we may either receive 5 or error as the final answer, dependent upon process scheduling.

While ultimately weaker than the previous verification techniques, this best-effort approach may

be ideal for monitoring expensive properties during a program, such as a contract that performs a

probabilistic primality test in an infinite loop, randomly checking the divisibility of its input until

the user program terminates [18, 32].

This concurrent verification strategy, too, has its own pitfalls:

(1) Concurrent verification may be too weak: a best-effort approach to verification may inhibit

programmers from reliably ensuring program properties, (e.g., a probabilistic primality check

contract may not find a counter-example even if the number is not prime).

(2) Scheduler-dependent results may not detect some contract violations, or may only detect them

in some program executions.

(3) As with promise-based contracts, contracts with side effects that modify global state be alto-

gether unpredictable.

Alternatively, we may instrument the language runtime to wait for these monitoring

processes to run to completion. This “finally-concurrent” verification recovers the guarantees

lost in concurrent verification and ensures that every contract we monitor is fully verified, address-

ing issues 1 and 2 above at the cost of waiting for these monitors. Moreover, finally-concurrent

contract verification may also take advantage of parallel performance without the need for later

synchronization. Even so, it has its own issues:

(1) Finally-concurrent verification yields a similar flavor of over-evaluation as eager monitoring:

verifying a contract on a stream will never terminate, and as a result, it is possible to create

concurrent contract monitors that never terminate.

(2) Effectful contracts cause the same problems as they do in concurrent and promise-based veri-

fication.
23

2.6. Verification in Review

We have seen just five of the myriad verification strategies which make up the contract verification

design space. We have chosen these five because of their frequency in the literature, their apparent

utility, and their direct encodings. However, these are only a small portion of the far-reaching

mechanisms for contract verification, and we explore and encode additional verification approaches

further in §5.7.

Researches have explored this verification design space, and two, in particular, make strong argu-

ments about the relative utility of different verification strategies:

• Findler et al. [37] identify a number of contracts where semi-eager verification is critical to

program performance, and argue that it must be a programmer option, going so far as to

introduce it as a secondary, ad-hoc mechanism alongside Racket’s fixed, eager verification.

• Degen et al. [22] declare that “faithfulness is better than laziness” for lazy languages, advo-

cating that, in a fixed-strategy setting, concrete contract verification is more valuable than

preserving the underlying program’s performance or behavior.

This presentation, following our work in Swords et al. [80], takes a different stance: programmers

should have mechanisms to choose how and when contract verification occurs on a per-contract

basis, selecting the most appropriate strategy in each case. As we will see over the course of

this dissertation, separating verification into a separate, interacting process allows us to provide

multiple verification strategies in a unified system, ultimately constructing a framework which

allows programmers to construct and extend generic contract verification to include generalized

runtime verification mechanisms.

24

C H A P T E R 3

Uniting Contract Verification Strategies in a Unified

Framework

synopsis
Each of the contract verification strategies we have seen has its own strengths and weak-

nesses. While other authors advocate for singular verification mechanisms or providing

secondary verification mechanisms through non-standard interfaces, our work in Swords

et al. [80] proposes another alternative: allowing programmers to choose their verification

strategy on a contract-by-contract basis to address different needs over the course of a

program. In this section, we explore this approach to verification, introducing a strat-

egy-parameterized monitoring form (§3.1), demonstrating how we may reuse contracts

to provide wildly different behaviors by varying their verification strategies (§3.2), and

explaining how verification strategies may each be uniformly encoded as variations of the

same structure (§3.3).

In traditional contract systems, language designers provide a single, fixed verification behavior as

a permanent fixture of the evaluation semantics for a given language, and, as a result, the system

gives the programmer little choice in how contract verification proceeds. Such fixtures have two

immediate effects:

• Users cannot choose how and when to verify contracts. They must rely on the existing

system’s behavior, even when its behavior is not ideal. For example, consider inspecting that

a tree is a binary-search tree (e.g., children to the left of a node have smaller values and

children to the right have larger values). Fully verifying this contract before a binary-search

tree insertion routine will impact the asymptotic behavior of a program. If, however, the

programmer has the option to use a semi-eager contract in this situation, they may check only

those nodes the insertion explores, locally verifying the property while preserving asymptotics.

• Contract verification is an unknown quantity. If the verification strategy is a fixed,

opaque entity to the programmer, they may find it difficult or outright impossible to predict
25

the impact and behavior of contracts across their program, making it difficult to reason about

contracts with dependent values and side effects.

To address these problems, we follow Swords et al. [80], abstracting away from the traditional,

“one-strategy” verification mechanisms by exposing contract verification strategies as an additional

parameter to the verification form, ultimately allowing programmers to choose their verification

strategy on a contract-by-contract basis to address different needs over the course of a program.

To demonstrate the immediate utility of such an approach, consider verifying that a tree is a

binary-search tree in each of the following ways in the same program:

• via eager monitoring after initial construction, as a post-condition to ensure that, e.g., the

list-to-tree procedure produces the correct structure;

• via semi-eager monitoring, to verify that each element explored during a binary tree lookup

satisfies the contract while preserving asymptotics;

• via promise-based monitoring, to inspect the tree while the program performs additional,

unrelated operations;

• and via concurrent monitoring, to ensure that a tree read from a file has the correct structure.

Each of these tree verification situations occurs naturally over the course of a program, and yet

standard contract systems support only one of these behaviors. A multi-strategy system, however,

allows us the flexibility to write each of these monitors across the same program, suiting the needs

of each situation.

Through the rest of this chapter, we will look at a programming mechanism that allows us to provide

this behavior, examine examples using this mechanism, and discuss the underlying principles that

allow us to implement it.

3.1. Multi-Strategy Monitoring

To facilitate multi-strategy monitoring, we must provide a general mechanism to allow programmers

to select which strategy to use for each verification site. To this end, we introduce a revised mon

form:

E := ... | mon E E E E

As before, the mon operation takes a contract and an expression to monitor. In addition to these

arguments, this revised mon form takes two additional arguments:
26

• It takes a strategy argument—a value indicating how the contract monitor should proceed

with verification:

V := ... | S S := eager | semi | promise | concurrent | fconc

These strategies are first-class values, allowing programmers to use, retain, and pass monitor-

ing behaviors as parameters over the course of a program.

• It also takes a blame argument, indicating the parties responsible for the contract verifica-

tion in the event of a violation. We assume the standard blame disciplines described in the

literature [27, 36], using a three-tuple allowing us to blame the contracted value, context,

and contract dependent upon when and how the contract violation occurs. We use “B” as a

stand-in value for this blame tuple in our examples.

3.2. Small Examples of Multi-Strategy Monitors

We may now use our revised mon form in conjunction with these explicit strategy forms to produce

each monitoring behavior. For example, we can consider the same contract under eager and semi

verification, demonstrating that unused values will not signal violations using the semi strategy:

let x = mon nat/c eager 5 B in 3 →∗ 3 let x = mon nat/c eager -1 B in 3 →∗ raise
let x = mon nat/c semi 5 B in 3 →∗ 3 let x = mon nat/c semi -1 B in 3 →∗ 3

Similarly, we can use promise to verify a contract concurrently while the computation proceeds,

replicating our promise-based verification behavior from Chapter 2:

User Process Monitoring Process

let msg = mon nat/c promise -1 B

in encrypt (gen-new-key) msg

→∗ let msg = [⟨read ι⟩]
in encrypt (gen-new-key) msg

if (λ n. n ≥ 0) -1
then write ι -1
else write ι (error B)

→∗ encrypt (gen-new-key) [⟨read ι⟩] →∗ write ι (error B)

→∗ encrypt V (read ι)

→∗ error B

The concurrent and fconc strategies also proceed as described in the previous chapter, allowing

the programmer to indicate that verification should proceed using concurrent or finally-concurrent
27

verification, respectively:

let x = mon nat/c concurrent -1 B in (2 + 4) + x →∗ 5 or raise
let x = mon nat/c fconc -1 B in (2 + 4) + x →∗ raise

Exposing verification strategies in this manner allows programmers to precisely choose how and

when to verify each software contract in a unified framework, flexibly moving from one monitoring

strategy to another at each verification site.

3.2.1. Binary-Search Trees with Multi-Strategy Monitors

In our unified framework, strategies are first-class values, meaning that they can flow through the

program like any other value. This allows programmers to write contracts (and contract combi-

nators) that take verification strategies as arguments, allowing programmers to reuse the same

contract to produce a variety of verification behaviors.

To demonstrate the utility of this approach, consider a “bst/c” contract over binary trees, param-

eterized by a strategy indicating how to recursively verify the contract at each node (i.e., the

contract applied to each child node). Such a parameterized contract allows us to write each of the

binary-search tree contracts described in the introduction:

• “mon (bst/c eager) eager tree B” eagerly verifies that a tree is a binary-search tree;

• “mon (bst/c semi) semi tree B” returns a tree that will monitor that each subtree is correct-

ly-ordered as the program explores it;

• “mon (bst/c promise) promise tree B” creates a cascading chain of monitoring processes for

each node, and exploring the tree synchronizes with the appropriate processes at each level;

• “mon (bst/c concurrent) concurrent tree B” concurrently verifies that the tree is a bina-

ry-search tree using a similar set of cascading processes, but as a “best-effort” check;

• and “mon (bst/c fconc) fconc tree B” proceeds similar to the concurrent contract, forcing the

user program to wait for the verifier to complete before terminating.

These are not, however, the only possibilities in our framework: the strategy argument to “mon”

describes how the top-level monitor should behave while the strategy argument to “bst/c” separately

describes the recursive verification, allowing us to freely modify the exterior verification strategy

independently of the “bst/c” argument to produce diverse verification structures. For example, we

may create a single, promise-based verifier that eagerly verifies each subcontract as:

mon (bst/c eager) promise tree B

28

The resultant verifier will return a promise to the user process, proceeding with eager verification

in a separate process and allowing the programmer to retrieve the eager verification result at a

later synchronization point.

As we will see in later chapters, this intermixing of verification strategies allows us to express

complex verification constructs, verifying rich properties when and how we wish.

3.3. A Unifying Semantics for Contract Verification

Thus far, we have presented our strategy reduction semantics as specialized forms, each designed

from the ground up to provide unique verification behavior. As a result, it appears that, in order to

develop a unified verification system, we need to build bespoke implementations to adhere to each

individual verification behavior, developing unique semantic structures for each. Such an approach,

however, soon becomes unwieldy and over-specialized, forcing language developers to carefully craft

each combinator-strategy interaction.

This perception, however, is incorrect.

3.3.1. Separating Evaluators

Although it may be possible to encode each combinator-strategy as a unique entity, each strategy

is, fundamentally, a small variation on the same theme: the monitors executes some verification

code, and this execution interacts with the user program at one or more points over the course

of verification in order to receive the monitored term and (potentially) report the verification

result. Viewed through this lens, we see that each strategy variation describes how and when this

monitoring evaluator interacts with the user program, and how the user program proceeds in the

context of these interactions.

To illustrate this concept, consider the expression

5 + mon nat/c eager (1 + 2) B

To evaluate the expression, we perform the following steps:

(1) The user program will evaluate “(1 + 2)”, yielding “3.”

(2) The monitoring expression “mon nat/c eager 3 B” will suspend the user program while the

monitoring evaluator ensures that “3” is a natural number.
29

(3) The monitoring expression yields “3” and the user evaluator resumes, evaluating “5 + 3” to

produce “8” as the final result.

We present this derivation in the top half of Figure 3.1, where we have indicated the user portions

of the evaluation in red and the monitoring portions in blue .

This value flow between these “evaluator” regions is reminiscent of the ownership model described

by Dimoulas et al. [27], where we account for the contract monitor itself as a potential value owner.

This separation of concerns leads to our key insight:

The contract verification portion of a program is fundamentally separate from the user

portion, and we may isolate each individual contract monitor as an individual process

that interacts with the user evaluator [26, 31, 80].

If we apply this approach to our example above, explicitly separating the two evaluators, we arrive

at the derivation in the bottom half of Figure 3.1, where the user and monitoring processes explic-

itly interact across a communication channel to compute the final program result. This revised

derivation reveals the fundamental nature of contract monitoring: a contract monitor is a separate

evaluator communicating with the user program.

Extracting and isolating contract monitors in this way yields an immense benefit: in order to model

the contract monitor as a separate process, we must explicitly encode each communication point

between the user program and the monitor, precisely describing the two evaluators’ interactions.

This insight is critical because, as we will see in the Chapter 5, we may encode each of these

verification strategies by varying this pattern of communication, allowing us to uniformly implement

multiple, interacting verification strategies in a unified framework. Without this separation, any

such encoding and interactions would be ad-hoc, forcing us to consider and specifically handle each

one.

This approach to complete monitor separation also applies to structural contracts, such as function

contracts. For example, consider verifying that a function’s input and output are each natural

numbers, using eager contract verification (wherein our “mon” form and “fun/c” contract combinator

take strategy parameters to describe verification behaviors, and B is an opaque blame value):

(mon (fun/c eager nat/c eager nat/c) eager (λ x. x − 10) B) 5 ⇒ raise B (27)

As we evaluate this expression, we see a series of reductions that are expressly verification re-

ductions; that is, reductions that have no impact on the program except to verify its contracts.
30

5 + mon nat/c (1 + 2)

5 + mon nat/c 3

5 + if nat? 3 then 3 else raise

5 + if nat? 3 then 3 else raise

5 + 3

5 + 3

5 + mon nat/c (1 + 2)

5 + seq (write (1 + 2)) read (λ v. if nat? v then (write v) else (write raise)) read

(λ v. if nat? v then (write v) else (write raise)) read5 + seq (write 3) read

(λ v. if nat? v then (write v) else (write raise)) 3

write 35 + read

5 + 3

8

Figure 3.1. Separating an eager, flat contract into a pattern of communication. (We take
nat? to mean λ x. x ≥ 0 to simplify our presentation.) The first image depicts a single evalu-
ator indicating the different evaluation components of a software contract system, where we
color the user components in red and the software contract system component in blue .
The second image depicts the same verification with explicit interactions between the user
program and a separate, monitoring evaluator.

31

Consider the trace given in the top half of Figure 3.2, where we highlight these reductions in blue 1:

each highlighted point in the evaluation, the contract system interrupts the user portion of the pro-

gram in order to verify a contract, returning control to the user program only after completing

verification. In this example, this interaction occurs as follows:

• First, the function monitor creates a contracted version of the function.

• Next, the monitoring expression “mon eager nat/c 5 (invert B)” ensures “5” is a natural number

(and modified blame to appropriately indicate the function’s input, and not the function itself,

is responsible in the case of the contract violation), suspending the user program while checking

this contract.

• After this contract verification, the user program proceeds with “((λ x. x − 10) 5).”

• Finally, the post-condition monitor attempts to verify that “-5” is a natural number, raising

an error when the evaluator detects the contract violation.

If we explicitly model these evaluators, separating out the monitoring portion of the program from

the user portion, we arrive at the derivation in the bottom half of Figure 3.2, where we can see

the evaluator interactions and suspension in each case. As in our last example, we have multiple

evaluators each verifying its own contract.

3.3.2. Multi-Strategy Verification as Patterns of Communication

Separating the monitoring evaluators from the user program exposes contract verification as a

pattern of communication between processes, and this communication-based interpretation for con-

tract monitors may be extended to other verification strategies. For example, consider semi-eagerly

verifying that “-1” is a natural number in two programs, where the first does not use the verification

result:

let x = mon semi nat/c -1 B in 10

⇒let x = delay (... check contract ...) in 10

⇒10

(28)

1We make the assumption that contracts are applied to the subject term and blame information to proceed with
verification. As we will see later, this assumption leads to direct combinator definitions.

32

(mon (fun/c eager nat/c eager nat/c) eager (λ x. x − 10) B 5

⇒ ((fun/c nat/c eager nat/c eager) (λ x. x − 10) B) 5

⇒ (λ x. mon nat/c eager ((λ x. x − 10) (mon nat/c eager x (invert B))) B) 5

⇒ mon nat/c eager ((λ x. x − 10) (mon nat/c eager 5 (invert B))) B

⇒ mon nat/c eager ((λ x. x − 10) (nat/c 5 B̄)) B

⇒ mon nat/c eager ((λ x. x − 10) (if nat? 5 then 5 else raise B̄)) B

⇒ mon nat/c eager ((λ x. x − 10) 5) B

⇒ mon nat/c eager (5 − 10) B

⇒ mon nat/c eager -5 B

⇒ nat/c -5 B

⇒ if nat? -5 then -5 else raise B

⇒ raise B

(mon (fun/c nat/c eager nat/c eager) eager (λ x. x − 10) B 5

⇒ (read ι0) 5
| write ι0 (mon (fun/c nat/c eager nat/c eager) eager (λ x. x − 10) B)

⇒ (λ x. mon nat/c eager ((λ x. x − 10) (mon nat/c eager x (invert B))) B) 5

⇒ mon nat/c eager ((λ x. x − 10) (mon nat/c eager 5 (invert B))) B

⇒ mon nat/c eager ((λ x. x − 10) (read ι1)) B | write ι1 (nat/c 5 B̄)

⇒ mon nat/c eager ((λ x. x − 10) (read ι1)) B | write ι1 (if nat? 5 then 5 else raise B̄)

⇒ mon nat/c eager ((λ x. x − 10) 5) B

⇒ mon nat/c eager (5 − 10) B

⇒ mon nat/c eager -5 B

⇒ (read ι2) | write ι2 (nat/c -5 B)

⇒ (read ι2) | write ι2 (if nat? -5 then -5 else raise B)

⇒ raise B

Figure 3.2. Separating an eager, function contract into a pattern of communication. We
take invert to indicate blame inversion [36], use B̄ to indicate the inverted blame value, and
directly encode communication channels ι (defined in Chapter 4) for communication. The
first trace depicts a single evaluator, with the verification reductions highlighted in blue .
The second trace depicts verification with separate evaluators, where we use the “ | ” symbol
to delineate evaluators.

33

let x = mon semi nat/c -1 B in x + 10

⇒ let x = delay (... check contract ...) in x + 10

⇒ (read ι) + 10 | write ι (nat/c -1 b)

⇒∗(raise B) + 10

⇒ raise B

(29)

We have taken delay here to serve as a delaying operation to allow us to avoid evaluating the

semi-eager contract until its use. As described in the previous chapters, semi-eager verification

ensures we do not verify contracts on unused values, and thus, in the first example, reducing “let”

eliminates this delayed contract and the contract is never verified.

Notice how semi-eager verification compares to our previous, eager examples: in semi-eager verifi-

cation, we delay creating the verification process until the delayed expression occurs in a forcing

position. Once it does, however, we create the appropriate monitoring evaluator and perform verifi-

cation while the user program awaits the result. Each strategy we have seen so far follows this style

of variation: the monitoring form subverts the user program, establishing an appropriate pattern

of communication to produce the desired verifier interactions.

This collection of insights about the core nature of contract verification situates us to begin construc-

tion of a multi-strategy contract verification system built using interacting processes to produce

a wide range of strategy behaviors. To this end, we must define a language that supports these

features.

34

C H A P T E R 4

λπ
cs: A Language for Implementing Runtime Verification

as Patterns of Communication

synopsis
Thus far, we have explored contract verification strategies and introduced the notion of

separating verification into additional processes that interact with the user program. To

introduce formal semantics for this approach, we need a calculus with facilities to serve

as a starting point for these encodings. In this chapter, we introduce λπ
cs, a variant of

Concurrent ML with additional facilities that will serve as the foundation of our strategy

encodings (§4.2) and prove type safety for the core language (§4.3).

The previous chapter hinted at the tools we need for encoding contract verification as patterns of

communication in a unified system: we require multiple processes, inter-process communication,

errors with propagation, and delayed expressions with a forcing mechanism.

In this chapter, we introduce λπ
cs, a variant of Concurrent ML [55, 74, 75] with multiple processes

and a concurrent evaluation relation that will serve as a basis for our contract (and general runtime)

verification framework. We present the static portion (sans types) of this language in Figure 4.1

and the dynamic portion in Figure 4.2; we define the type system in §4.3 at end of the chapter.

4.1. The Basics of the λπ
cs Calculus

Our λπ
cs calculus is, in general, unremarkable: as with most modern languages, our calculus supports

process creation and communication events, raising and catching errors, and delaying and forcing

individual terms in the usual way. These are common features in most modern languages, and, as a

result, the contract framework we present in the next chapter is a highly-portable implementation.

At its core, λπ
cs includes a term language e with values v, a term reduction relation “→”, a con-

text-based reduction relation “ 7−→” that works with evaluation contexts D and E (where D ⊆ E),

and a concurrent reduction relation “⇒”. The concurrent evaluation relation extends “ 7−→” to a
35

Syntax
Exprs e := x | v | e e | if e then e else e

| e binop e | unop e | (e, e) | fst e | snd e
| case (e; x▷ e; x▷ e) | inl e | inr e
| force e | raise e | catch e e
| spawn e | spawnf e | chan | read e | write e e
| mon e e e e

Values v := λ x. e | ι | delay e | (v, v) | inl v | inr v
| n | true | false | unit | B | s

Strategies s := eager | semi | promise | · · ·

D-Contexts D := □ | D e | v D | if D then e else e
| D binop e | v binop D | unop D
| (D, e) | (v,D) | fst D | snd D
| case (D; x▷ e; x▷ e) | inl D | inr D
| force D | raise D | catch D e
| chan | read D | write D e | write v D
| mon D e e e | mon v D e e | mon v v e D

E-Contexts E := D | D[E] | catch v E

ProcId π ∈ N
Process proc = ⟨ei⟩πi

Proc. Set P ∈ Fin(proc)

Proc. Decomp. P + ⟨e⟩π ≡ P ∪ {⟨e⟩π}

Proc. Config. K,T, P K ∈ Fin(channel names)
T ∈ Fin(process ids)

Figure 4.1. Syntax definitions for λπ
cs.

finite set of processes (i.e., terms with associated process identification numbers) and introduces

reductions to handle channel creation, process creation, and process communication.

4.2. Language Features

In this section, we present λπ
cs in detail, discussing the extended features in detail in preparation

for defining our monitoring framework.

4.2.1. Term Language Features

The term language e contains a number of standard operations [73]. We define these operations

in the usual way, introducing a term reduction relation “→” to perform subject reductions and a

context-level reduction relation “7−→” to lift these subject reductions to the evaluation contexts D

36

Dynamic Semantics
e → e′

(λ x. e) v → e[v/x]
if true then e1 else e2 → e1
if false then e1 else e2 → e2
v1 binop v2 → v where δ(binop, v1, v2) = v
unop v′ → v where δ(unop, v′) = v
case (inl v; x1 ▷ e1; x2 ▷ e2) → e1[v/x1]
case (inr v; x1 ▷ e1; x2 ▷ e2) → e2[v/x2]
force (delay e) → e
force v → v where v ̸= delay e
catch v1 v2 → v2
catch v1 (raise v2) → v1 v2

e 7−→ e′

e → e′

E [e] 7−→ E [e′] E [D[raise v2]] 7−→ E [raise v2]

e1
ι
⌢
⌣ e2 with (e′1, e

′
2)

write ι v
ι
⌢
⌣ read ι with (unit, v)

e1
ι
⌢
⌣ e2 with (e′1, e

′
2)

e2
ι
⌢
⌣ e1 with (e′2, e

′
1)

Notation
P + ⟨e⟩π ≈ P ⊎ ⟨e⟩π

K,T, P ⇒ K ′, T, P ′

e 7−→ e′

K,T, P + ⟨e⟩π ⇒ K,T, P + ⟨e′⟩π

π′ /∈ dom(P)

K,T, P + ⟨E [spawn e]⟩π ⇒ K,T, P + ⟨E [unit]⟩π + ⟨e⟩π′

π′ /∈ dom(P)

K,T, P + ⟨E [spawnf e]⟩π ⇒ K, T ∪ {π′}, P + ⟨E [unit]⟩π + ⟨e⟩π′

ι /∈ K

K,T, P + ⟨E [chan]⟩π ⇒ K ∪ {ι}, T, P + ⟨E [ι]⟩π

e1
ι
⌢
⌣ e2 with (e′1, e

′
2) ι ∈ K

K,T, P + ⟨E1[e1]⟩π1 + ⟨E2[e2]⟩π2 ⇒ K,T, P + ⟨E1[e′1]⟩π1 + ⟨E2[e′2]⟩π2

Figure 4.2. Dynamic semantics for λπ
cs.

37

and E. These reduction relations also include operators to raise and catch errors and to delay and

force expressions, which we now explain in depth as each plays a critical role in encoding verification

strategies in the next chapter.

Raising and Catching Errors. In order to construct contracts that report errors, we require

error-signalling facilities. To this end, we introduce “raise” and “catch” in λπ
cs, which allow us to

signal errors (via “raise”) and catch and handle them (via “catch”). To simplify our type system, we

specialize these operators to blame values B, which are opaque tuples of blame information in the

style of Dimoulas et al. [27]. Raising an error escapes the surrounding program context, excluding

handlers (i.e., D contexts):

((λ x. x + 10)(raise B + 100)) →∗ raise B

As expected, the “catch” operation uses a handler expression to process errors, yielding values

instead.
catch (λ x. 5) (100 + (if even? 5 then 5 else raise B))

7−→ catch (λ x. 5) (raise B)

7−→ (λ x. 5) B

7−→ 5

In this example, the error in the alternative branch of the “if” expression propagates through the

addition expression before arriving at the catch form. The catch form then passes he blame value

B as an argument to the handler “λ x. 5,” which discards the argument and yields “5” as the

expression result.

Conversely, the evaluator discards the handler form if the term inside the catch expression termi-

nates with a value:

catch (λ x. 5) (if even? 4 then 4 else raise B)

7−→ catch (λ x. 5) 4

7−→ 4

In this example, the expression inside the handler completes with the value 4 and the handler yields

this as the final result.

In the next chapter, we will use “raise” and “catch” to signal and propagate contract errors.

Delaying and Forcing Expressions. The delay and force operations allow us to create thunk-like

objects [53], forcing their evaluation at a later point. Individual delayed expressions do not reduce

38

outside of force operations:

delay (10 + 5) ̸7−→

As expected, the forcing form extracts and evaluates the delayed expression:

let x = delay (10 + 5) in (1 + 2) + force x

7−→ (1 + 2) + force (delay (10 + 5))

7−→ 3 + force (delay (10 + 5))

7−→ 3 + (10 + 5)

7−→∗ 18

In this example, we create a delayed expression “x” and later force it, trigger the evaluation of

“(10 + 5)” in the body of the let expression.

Finally, observe that delayed expressions inhibit raising errors:

catch (λ x. 5) (delay (raise B)) 7−→ delay (raise B)

In the next chapter, we will use “delay” and “force” to postpone contract verification in the case of

semi-eager and promise-based verification strategies.

4.2.2. Process-Level Operations

The final feature of λπ
cs that we introduce is the process component, which lifts individual expressions

into a multi-process collection, providing rules for process creation, communication, and individual

process reduction. We define processes in λπ
cs via process identification numbers π such that ⟨e⟩π

is a process. Next, we define process configurations K,T, P as a three-tuple:

• K is a set of channel names used in the configuration

• T is a termination set of process identification numbers, indicating the processes that need to

complete for a configuration to be considered an answer configuration, defined as:

Definition 4.1 (Answer Configuration). A process configuration K,T, P is an answer config-

uration if, for each π ∈ T , ⟨e⟩π ∈ P and e ̸7−→.

We will use this definition of answer configuration in Chapter 5 to determine when finally-con-

current verifiers are complete.

• P is the set of processes ⟨e⟩π in the configuration.

When convenient, we will elide K and T from our traces and write P + ⟨e⟩π to mean P ⊎ ⟨e⟩π to

simplify presentation.
39

Process Reduction. As mentioned above, “⇒” extends “ 7−→” to process configurations K,T, P

such that any valid “ 7−→” reduction may be performed by an individual process:

K,T, {⟨catch f (10 + raise B)⟩π} ⇒ K,T, {⟨catch f (raise B)⟩π} ⇒ K,T, {⟨f B⟩π}

Furthermore, “⇒” is non-deterministic, and thus each of the following reductions are valid in λπ
cs:

K,T, {⟨10 + 20⟩π0 , ⟨20 + 30⟩π1} ⇒ K,T, {⟨30⟩π0 , ⟨20 + 30⟩π1} ⇒ K,T, {⟨30⟩π0 , ⟨50⟩π1}

K,T, {⟨10 + 20⟩π0 , ⟨20 + 30⟩π1} ⇒ K,T, {⟨10 + 20⟩π0 , ⟨50⟩π1} ⇒ K,T, {⟨30⟩π0 , ⟨50⟩π1}

Each of these reductions is valid in λπ
cs, and we will use this behavior later to provide “best-effort”

checking.

Finally, observe that processes continue to exist in the configuration after evaluation: if a process

terminates in some value v, it will remain in the process set without further reduction:

K,T, {⟨unit⟩π, ⟨2 + 3⟩π′} ⇒ K,T, {⟨unit⟩π, ⟨5⟩π′} ̸⇒

This process behavior allows us to use monotonicity arguments in proving type safety in §4.3.

Process Creation. We add new processes to a configuration with the “spawn” operation1:

K,T, {⟨seq (spawn e) e2⟩π} ⇒ K,T, {⟨seq unit e2⟩π, ⟨e⟩π
′}

To create a new process, we allocate a unique process identification number and add the process

to the process configuration. If, however, we create the process spawnf , we add its process iden-

tification number to the termination set T , ensuring the process will run to completion before

considering the configuration an answer configuration:

K, {π0}, {⟨seq (spawn (10 + 5)) 2⟩π0}
⇒ K, {π0}, {⟨seq unit 2⟩π0 , ⟨10 + 5⟩π1}
⇒ K, {π0}, {⟨2⟩π0 , ⟨10 + 5⟩π1} Answer Configuration

(30)

K, {π0}, {⟨seq (spawnf (10 + 5)) 2⟩π0}
⇒ K, {π0, π1}, {⟨seq unit 2⟩π0 , ⟨10 + 5⟩π1}
⇒ K, {π0, π1}, {⟨2⟩π0 , ⟨10 + 5⟩π1}
⇒ K, {π0, π1}, {⟨2⟩π0 , ⟨15⟩π1} Answer Configuration

(31)

In the first example, “spawn” creates π1, which does not add its process identification number to T ,

and so we consider the configuration complete when the process π0 finishes. In the second example,

however, “spawnf”’ adds π1 to T , and thus process π1 runs to completion before the configuration
1We use “seq” to mean “λ x y. y” and “let x = e1 in e2” to mean “(λ x. e2) e1”; we also use their extended,
multi-argument forms in the usual way.

40

is complete. This difference will play a role in defining our concurrent and finally-concurrent

verification strategies in the next chapter.

Process Communication. Processes may communicate across channels ι via the “read” and

“write” operators. We use “chan” to create a new channel, add it to K, and continues the pro-

gram with it:

K,T, {⟨let i = chan in seq (spawn (write i 10)) (read i)⟩π}
⇒ K ⊎ {ι}, T, {⟨let i = ι in seq (spawn (write i 10)) (read i)⟩π}
⇒ K ⊎ {ι}, T, {⟨seq (spawn (write ι 10)) (read ι)⟩π}

We define inter-process communication in terms of matched events in Figure 4.2:

e1
ι
⌢
⌣ e2 with (e′1, e

′
2)

The matched event relation ensures that processes only communicate values, and that communica-

tion proceeds regardless of process order in P (since P is an unordered set).

When two processes have matched events, they may communicate as a reduction, wherein the

writer continues with unit and the reader continues with the written value:

K ⊎ {ι}, T, {⟨seq (spawn (write ι 10)) (read ι)⟩π}
⇒∗ K ⊎ {ι}, T, {⟨read ι⟩π, ⟨write ι 10⟩π′}
⇒ K ⊎ {ι}, T, {⟨10⟩π, ⟨unit⟩π′}

Here, write ι 10 matches with read ι at line two as:

write ι 10
ι
⌢
⌣ read ι with (unit, 10)

After the reduction, the writing process continues with unit and the reading process continues with

10.

4.3. Types & Type Safety

Before we continue with defining contract verification in λπ
cs, we pause to prove type safety for this

language core. Our proof follows Reppy [74]—we present a type system for the term language, define

“well-formed” process configurations based on well-formed terms, and use process configuration

“evaluation traces” to define type safety for a process collection. We have also formalized much of

this chapter in Coq2.

2https://www.github.com/cgswords/dissertation

41

https://www.github.com/cgswords/dissertation

4.3.1. Typing Rules

We begin with a term-level type system, presented in Figure 4.3, which follows standard conven-

tions [73]: we provide direct types for our built-in features, including base types, standard type

constructors, and blame types. Our type judgments include two environments:

• The Γ environment associates types with variables, and we use it in the standard way to

ensure arguments and bindings are correctly-typed.

• The ∆ environment associates types with channels across an entire process collection to ensure

well-typed communication.

Our type judgments are generally standard, but include the following anomalies:

• We include errors of the form raise e, typing them at any type (to allow them to occur anywhere

in an expression).

• We include a blame type for opaque blame values B, which are akin to ML’s exn types [67]

insofar as we only use blame to carry error information when an expression raises a contract

violation.

• We include a strat type as the type of verification strategies.

• The delay construct is unusually typed: to ease the return type of mon, we type a delayed

expression at its internal type; otherwise, we would need to parameterize mon’s return type

based on the input strategy, which would induce tracking verification strategies at the type

level and employing type-level meta-functions to determine the correct type structure in each

case, adding immense user complexity. Since real-world software contract systems occur pre-

dominantly in dynamically-typed languages [36, 37, 81], this simplification seems a practical

allowance. This allowance, however, means that we need to consider a class of well-typed but

irreducible, or unforced, terms, such as “(delay (λ x. e)) e′.” We formalize this situation as a

relation in Figure 4.4.

To type process configurations, we first define well-formed configurations:

Definition 4.2 (Well-Formed Configuration). A process configuration K,T, P is well-formed if

• for each process ⟨e⟩π,

– e contains no free variables,

– there is no e′ ̸≡ e such that ⟨e′⟩π ∈ P , i.e., each process in P is uniquely numbered,

• the set of terminating process ids T ⊆ dom(P);
42

Type Definitions Judgments
Types τ := int | bool | blame | () | τ → τ | τ + τ | τ × τ

| chan τ | strat

Typ Envs. Γ := · | (x, τ),Γ
Chan Envs. ∆ := · | (ι, τ),Γ

Proc Types. ρ := · | (π, τ), ρ

Term Typing Judgments
Γ;∆ ⊢ e : τ

Γ(x) = τ

Γ;∆ ⊢ x : τ

Γ;∆ ⊢ e1 : τ1 → τ Γ;∆ ⊢ e2 : τ1
Γ;∆ ⊢ e1 e2 : τ

Γ;∆ ⊢ e1 : bool Γ;∆ ⊢ e2 : τ Γ;∆ ⊢ e3 : τ

Γ;∆ ⊢ if e1 then e2 else e3 : τ

Γ;∆ ⊢ e1 : τ → blame → τ Γ;∆ ⊢ e2 : strat Γ;∆ ⊢ e3 : τ Γ;∆ ⊢ e4 : blame
Γ;∆ ⊢ mon e1 e2 e3 e4 : τ

δτ (binop) = τ1 → τ2 → τ
Γ;∆ ⊢ e1 : τ1 Γ;∆ ⊢ e2 : τ2

Γ;∆ ⊢ e1 binop e2 : τ

δτ (unop) = τ1 → τ Γ;∆ ⊢ e : τ1
Γ;∆ ⊢ unop e : τ

Γ;∆ ⊢ e1 : τ1 Γ;∆ ⊢ e2 : τ2
Γ;∆ ⊢ (e1, e2) : τ1 × τ2

Γ;∆ ⊢ e : τ1 × τ2
Γ;∆ ⊢ fst e : τ1

Γ;∆ ⊢ e : τ1 × τ2
Γ;∆ ⊢ snd e : τ2

Γ;∆ ⊢ e : τ1 + τ2 (x1, τ1),Γ;∆ ⊢ e1 : τ (x2, τ2),Γ;∆ ⊢ e2 : τ

Γ;∆ ⊢ case (e; x1 ▷ e1; x2 ▷ e2) : τ

Γ;∆ ⊢ e : τ1
Γ;∆ ⊢ inl e : τ1 + τ2

Γ;∆ ⊢ e : τ2
Γ;∆ ⊢ inr e : τ1 + τ2

Γ;∆ ⊢ e : τ

Γ;∆ ⊢ force e : τ

Γ;∆ ⊢ e : blame
Γ;∆ ⊢ raise e : τ

Γ;∆ ⊢ e1 : blame → τ Γ;∆ ⊢ e2 : τ

Γ;∆ ⊢ catch e1 e2 : τ

Γ;∆ ⊢ e : τ

Γ;∆ ⊢ spawnf e : ()
Γ;∆ ⊢ e : τ

Γ;∆ ⊢ spawn e : () Γ;∆ ⊢ chan : chan τ

Γ;∆ ⊢ e : chan τ

Γ;∆ ⊢ read e : τ

Γ;∆ ⊢ e1 : chan τ Γ;∆ ⊢ e2 : τ

Γ;∆ ⊢ write e1 e2 : ()

(x, τ1),Γ;∆ ⊢ e : τ

Γ;∆ ⊢ λ x : τ1. e : τ1 → τ

∆(ι) = τ

Γ;∆ ⊢ ι : chan τ

Γ;∆ ⊢ e : τ

Γ;∆ ⊢ delay e : τ Γ;∆ ⊢ n : int

Γ;∆ ⊢ true : bool Γ;∆ ⊢ false : bool Γ;∆ ⊢ unit : () Γ;∆ ⊢ b : blame

Figure 4.3. Term-Language Typing Judgments for λπ
cs.

43

Unforced Terms
unforced(e)

unforced((delay e) v) unforced(if (delay e) then e1 else e2)

unforced((delay e) binop e′) unforced(v binop (delay e))

unforced(unop (delay e)) unforced(fst (delay e)) unforced(snd (delay e))

unforced(case ((delay e); x1 ▷ e1; x2 ▷ e2)) unforced(raise (delay e))

unforced(mon (delay e) e2 e3 e4) unforced(mon v (delay e) e3 e4)

unforced(read (delay e)) unforced(write (delay e) e′)

unforced(e)
unforced(E [e])

Figure 4.4. Unforced terms due to misplaced delay expressions for λπ
cs.

• and the set of free channels FC(P) ⊆ K.

The idea is that a process configuration is well-formed if each individual process contains a well-

formed expression, each process has a unique process identification number π, T contains only

process identification numbers for processes in P , and the associated channel list K contains all the

channels that occur in P .

We type processes with a map ρ from process ids π to associated types τ in a channel environment

∆ as:

Definition 4.3 (Process Typing). A well-formed configuration K,T, P has type ρ under channel

environment ∆, written

∆ ⊢ K,T, P : ρ

if:

• K ⊆ dom(∆)

• dom(P) ⊆ dom(ρ)

• for each ⟨e⟩π ∈ P , · ,∆ ⊢ e : ρ(π)

44

4.3.2. Proving Type Safety for λπ
cs

With our type system in place, we now prove type safety for λπ
cs. To prove type safety, we perform

the following steps:

(1) We define well-formed reductions for process configurations in terms of traces and computa-

tions.

(2) We show term-level type safety

(3) Finally, we extend term-level type safety to the configuration level via these traces and com-

putations.

To start, observe that well-formedness is closed under reduction:

Lemma 4.1 (Well-Formed Step). If K,T, P is well-formed under some ρ, ∆ and K,T, P ⇒

K ′, T ′, P ′, then there exist some ρ′, ∆′ such that ∆ ⊆ ∆′, ρ ⊆ ρ′, and ∆′ ⊢ K ′, T ′, P ′ : ρ′ (i.e.,

K ′, T ′, P ′ is well-formed).

Proof. By inversion on ⇒. □

Corollary 4.1 (Well-Formed Multistep). Lemma 4.1 extends for ⇒∗

Proof. By induction on the length of the evaluation sequence. □

Traces & Computations. To prove process-level type safety, we introduce the notion of traces [74]

to deal with the non-deterministic nature of ‘⇒’ in λπ
cs. We use π0 to indicate the process identifier

of the initial process in any given computation, and define traces as: We define traces as:

Definition 4.4 (Trace). A trace T is a (possibly infinite) sequence of well-formed configurations

T = ⟨K0, T0, P0;K1, T1, P1; · · · ⟩

such that Ki, Ti, Pi ⇒ Ki+1, Ti+1, Pi+1.

By Corollary 4.1, if K0, T0, P0 is well-formed, then any sequence of evaluation steps starting with

K0, T0, P0 is a trace. Next, we define the possible states of a process with respect to a configuration

as:

Definition 4.5 (Process States). Let P be a well-formed process set and let ⟨e⟩π ∈ P . The state

of π in P is either zombie, unforced, blocked, or ready, depending on the form of e:
45

• if e ∈ v, then it is a zombie;

• if unforced(e), then it is unforced;

• if e = E[e0] and e0 = read ι or e0 = write ι v and there does not exist some ⟨E′[e′]⟩π′ ∈ P

with e0
ι
⌢
⌣ e1, then π is blocked in P ;

• otherwise, π is ready in P .

We define the set of ready processes as Ready(P).

Next, we define that terminal configurations P as:

Definition 4.6 (Terminal Configuration). a configuration P is a terminal configuration if

Ready(P) = ∅

We can see that any terminal configuration with only blocked processes is deadlocked in the usual

sense [20].

Now, we define computations which quantify over non-deterministic reductions:

Definition 4.7 (Computation). A computation is a maximal trace that is either infinite or is finite

and ends in a terminal configuration. If e is an expression, then we define the computations of e

to be:

Comp(e) = {T | T is a trace with K0 = ∅, T0 = {π0}, P0 = {⟨e⟩π0}}

Next, we define the set of trace processes, which describe each process created over the course of a

computation:

Definition 4.8 (Trace Processes).

Procs(T) = {π | ∃Ki, Ti, Pi ∈ T with π ∈ dom(Pi)}

Finally, our non-deterministic reduction semantics forces us to define notions of convergence and

divergence relative to the computation of an expression.

Definition 4.9 (Convergence and Divergence). A process π ∈ Procs(T):

• converges to a value v in T , written π ⇓T v, if K,T, P + ⟨v⟩π ∈ T ;

• is unforced in T if it evaluates to some expression e in T , written π ⇓T e, if K,T, P+⟨e⟩π ∈ T

and unforced(e);
46

• converges to an error raise B in T , written π ⇓T raise B, if K,T, P + ⟨raise B⟩π ∈ T .

• diverges in T , written π ⇑T , if for every K,T, P ∈ T , with π ∈ dom(P), π is ready or blocked.

Our divergence includes deadlocked processes, processes that enter infinite loops, and process which

the configuration does not evaluate enough to terminate. (We use this latter case to describe

“best-effort” contracts.)

Type Safety. Finally, we define type safety for term languages via progress and preservation [85],

abstracted over ∆:

Lemma 4.2 (Term Progress). If there exists ∆ such that · ,∆ ⊢ e : τ , then either:

• ∃e′, e 7−→ e′

• e ∈ v

• e = raise B, for some B

• unforced(e)

• or e is a process reduction.

Proof. Straightforward, by induction on e. We have formalized this proof in Coq. □

Lemma 4.3 (Term Preservation). If there exists ∆ and e′ such that · ,∆ ⊢ e : τ and e 7−→ e′, then

· ,∆′ ⊢ e′ : τ .

Proof. Straightforward, by induction on 7−→ (and therein, →). We have formalized this proof in

Coq. □

Next, we define preservation for process collections:

Lemma 4.4 (Concurrent Type Preservation). If a configuration is well-formed with K,T, P ⇒

K ′, T ′, P ′, and there exists ∆ such that ∆ ⊢ K,T, P : ρ, then there is some channel typing ∆′ and

process typing ρ′ such that:

• ∆ ⊆ ∆′

• ρ ⊆ ρ′

• ∆′ ⊢ K ′, T ′, P ′ : ρ′

• ∆′ ⊢ K,T, P : ρ′

47

Proof (Sketch). The fourth property follows from the first three; the others proceed by induction

on K,T, P ⇒ K ′, T ′, P ′. □

Now, toward defining preservation for process configurations, we show that we can classify any

given expression:

Lemma 4.5 (Uniform Evaluation). If e is an expression with some trace T ∈ Comp(e) where

π ∈ Procs(T), then either π ⇑T , π ⇓T v, π ⇓T raise v, π ⇓T e′ with unforced(e′), or Pi(π) is stuck

for some Ki, Ti, Pi ∈ T .

Proof (Sketch). This follows immediately from the definitions. □

Our next lemma states that any stuck, but not unforced term, is untypeable:

Lemma 4.6 (Untypeability of Wrong Configurations). If P (π) is irreducible and not unforced(e) in

a well-formed configuration K,T, P , then there are not some ∆, ρ such that · ,∆ ⊢ P (π) : ρ(π). In

other words, K,T, P is untypeable.

Proof (Sketch). We assume, toward a contradiction, that there are some ∆ and ρ that correctly

type P (π). Then P (π) = E[e′] for some E and e′, and it suffices to show that e′ is untypeable, which

is a contradiction. Our proof proceeds by induction on the possible structures of e′, demonstrating

that each redex is reducible if it is typeable, a contradiction since it this redex is stuck, and thus

the redex must not be typeable. □

Next, we show syntactic soundness by first demonstrating uniform evaluation, e.g., that every

program is in one of four states.

Theorem 4.1 (Syntactic Soundness). Let e be an expression with · , · ⊢ e : τ . Then for any

T ∈ Comp(e), π ∈ Procs(T), with Ki, Ti, Pi the first occurrence of π in T , there exist ∆, ρ such

that

• ∆ ⊢ Ki, Ti, Pi : ρ

• ρ(π0) = τ

• and one of the following holds:

– π ⇑T

– π ⇓T v such that there exists ∆′,∆ ⊆ ∆′ and · ,∆′ ⊢ v : ρ(π)

48

– π ⇓T raise B

– π ⇓T e′, unforced(e′) such that there exists ∆′,∆ ⊆ ∆′ and · ,∆′ ⊢ e′ : ρ(π)

Proof. The existence of ∆ and ρ follow from Lemma 4.4. By Lemma 4.5 (the uniform evaluation

lemma), we know that then either π ⇑T , π ⇓T v, π ⇓T raise v, π ⇓T e′ with unforced(e′), or Pi(π)

is stuck for some Kj , Tj , Pj ∈ T .

Assume toward a contradiction that π is stuck in Kj , Tj , Pj . By Lemma 4.1, Kj , Tj , Pj is well-

formed, and, by Lemma 4.6, it must be untypeable. But, since the configuration ∅, {π0}, ⟨e⟩π0 is

typeable, by Lemma 4.4, there is a ∆′, ρ′ such that ∆′ ⊢ Kj , Pj , Tj : ρ′, a contradiction. Thus π

cannot be stuck.

Otherwise, π ⇑T , π ⇓T v, π ⇓T raise v, or π ⇓T e′ with unforced(e′).

If π ⇑T or π ⇓T raise B, we are done (in the former case due to divergence and in the latter because

raise B is well-typed at any type).

If π ⇓T v, then let Kj , Tj , Pj ∈ T such that Pj(π) = v. By Lemma 4.9, there is some ∆′ and ρ′ such

that ∆ ⊆ ∆′ and ρ ⊆ ρ′ such that ∆′ ⊢ Pj : ρ
′. Since ρ ⊆ ρ′, ρ(π) = ρ′(π), and so · ,∆′ ⊢ v : ρ(π).

If π ⇓T e′, unforced(e′), then let Kj , Tj , Pj ∈ T such that Pj(π) = e′. By Lemma 4.9, there is some

∆′ and ρ′ such that ∆ ⊆ ∆′ and ρ ⊆ ρ′ such that ∆′ ⊢ Pj : ρ
′. Since ρ ⊆ ρ′, ρ(π) = ρ′(π), and so

· ,∆′ ⊢ v : ρ(π). □

Before stating soundness, we define evaluation of a process identification in a trace as

evalT (π) = v if P (π) ⇓T v

evalT (π) = e′ if P (π) ⇓T e′, with unforced(e′)
evalT (π) = wrong if P (π) ⇓T e, with e stuck.

Finally, we state soundness:

Theorem 4.2 (Soundness). If e is a program with · , · ⊢ e : τ , then for any computation T ∈

Comp(E) and any process ID π ∈ Procs(T):

(a) If evalT (π) = v and Ki, Ti, Pi is the first occurrence of π in T , then for any ∆, ρ such that

∆ ⊢ Ki, Ti, Pi : ρ and ρ(π0) = τ , then there exists ∆′,∆ ⊆ ∆′ such that · ,∆′ ⊢ v : ρ(π)

(b) If evalT (π) = e′ with unforced(e′) and Ki, Ti, Pi is the first occurrence of π in T , then for

any ∆, ρ such that ∆ ⊢ Ki, Ti, Pi : ρ and ρ(π0) = τ , then there exists ∆′,∆ ⊆ ∆′ such that

· ,∆′ ⊢ e′ : ρ(π)

49

(c) evalT (π) ̸= wrong

Sketch. The proof follows directly from Theorem 4.1 and the definition of eval. □

Summary. We have now introduced λπ
cs and proven type safety. In the next chapter, we turn

our attention to encoding contract verification strategies as patterns of communication in a unified

framework build on top of this λπ
cs calculus.

50

C H A P T E R 5

Contracts as Patterns of Communication

synopsis
With our λπ

cs calculus in place, we may use its concurrency facilities to define contract

verification as patterns of communication. In this chapter, we define a series of contract

combinators (§5.1); encode the eager, semi, promise, concurrent, and fconc strategies

in λπ
cs (§5.2-5.6); discuss additional verification strategies in this context (§5.7); and use

these definitions to explore advanced contract verification techniques (§5.8).

In the last chapter, we introduced λπ
cs, a calculus with concurrency and communication facilities

based on Concurrent ML [55, 74, 75]. Using this language, we now define a contract verification

framework to provide multiple monitoring strategies in a single, unified system, expressing each

in terms of the λπ
cs primitives. Before we establish these definitions, however, we pause to define

contract combinators in λπ
cs in order to define contracts that characterize these distinct verification

behaviors.

5.1. Contract Combinators in λπ
cs

We begin with defining the pred/c, pair/c, and fun/c contract combinators. For our presentation in

λπ
cs, we diverge from the expression-form combinator structures we used in Chapter 2: our aim is to

make a general, flexible verification framework, which is at odds with fixing the shape and structure

of contract combinators as part of the core syntax. To avoid this problem, we now introduce an

alternative, spartan definition of software contracts:

Definition 5.1 (Software Contract in λπ
cs). A contract c is a procedure with type signature

τ → blame → τ that takes a value v (at type τ) and a set of blame information B, that, when

applied, either yields a new expression v′ (also at type τ) or raises an error.
51

This definition is intentionally permissive: in order to ensure that each verification strategy is

contract-agnostic, we treat contracts as “black box” verifiers that we apply directly to the monitored

term.

Using this definition of software contracts, we can define our combinators as higher-order functions

that produce “contract-shaped” procedures. To start, we define pred/c, the predicate contract

combinator, as:

pred/c ∆
= λ pred. λ val blame. if pred val then val else raise blame (32)

The pred/c contract combinator take a predicate and produces a contract-shaped procedure that

verifies that the predicate holds for its input. As in Chapter 2, the contract either yields the original

value (if the predicate holds) or raises the appropriate error (if it does not).

Our pair/c combinator in λπ
cs follows this same definition structure, including additional parameters

to allow contract definitions to specify which strategy to use for each of their subcontracts:

pair/c ∆
= λ con1 strat1 con2 strat2.

λ pair blame.(mon con1 strat1 (fst pair) blame),

mon con2 strat2 (snd pair) blame)

(33)

When a monitor verifies a pair/c contract, the pair-contract procedure asserts con1 on the first

element of the pair using strat1 and con2 on the second element of the pair using strat2. As we

will see in the next sections, these additional arguments provide programmers with precise control

over the verification strategy for each subcontract.

Our fun/c combinator mirrors our pair/c definition, accepting pre- and post-condition subcontracts

and their associated strategies:

fun/c ∆
= λ con1 strat1 con2 strat2.

λ func blame.

λ x. mon con2 strat2 (func (mon con1 strat1 x (invert blame))) blame

(34)

This definition adopts the same function verification tactic as in Chapter 2: enforcing the resultant

contract on a procedure produces a new, contracted variant of the procedure to “stand in” for the

original. When applied, this contracted variant checks the first contract, or pre-condition, on each

input, and checks the second contract, or post-condition, on each of func’s results [36, 79]. In this

revised definition, however, we verify the pre-condition con1 and post-condition con2 using their

associated strategies strat1 and strat2 (respectively). The invert operator performs blame inversion

52

in the usual way [27, 36], ensuring the procedure’s context will be blamed if the function input

violates its contract.

With these combinators in place, we turn our attention to the contract monitoring strategies de-

scribed in Chapter 2, providing semantic definitions for each in terms of λπ
cs.

5.2. Eager Contract Verification—Interrupting the User Evaluator

We begin with eager contract verification, where each contract is completely verified at assertion

time. Following Chapter 3, we model this verification as two, interacting evaluators: the standard,

“user” evaluator and a secondary, “monitoring” evaluator which performs the contract verification

and reports the result.

To model eager verification in this multi-process context as a pattern of communication, we utilize

the communication structure outlined in Chapter 3, wherein the initiating process:

(EU1) creates a new communication channel ι (via chan);

(EU2) spawns a monitoring process that will receive the monitored term, evaluate the contract,

and communicate the result via ι;

(EU3) provides the (evaluated) subject value to the monitoring process across ι;

(EU4) and retrieves the result from the monitoring process across ι and handles them (as ex-

plained below).

Dually, the monitoring process:

(EM1) receives the subject value v across ι;

(EM2) runs contract c on the value with the provided blame information;

(EM3) examines the verification result, injecting values to the right and, similarly, injecting

contract errors to the left (via catch);

(EM4) and writes the injected value across ι to the user process.

We present this interaction in Figure 5.1, with the monitoring process colored blue . These two

evaluators synchronize at (EU3, EM1), to communicate the subject value to the monitoring process,

and again at (EU4, EM4), to communicate the verification result. Because read is blocking, the

user process will wait at (EU4) until the monitor completes, replicating the evaluator-interrupting

behavior we describe in §2.2. Recall that the mon language form accepts, as input, the contract

to verify, the strategy describing how verification should proceed, the expression to check it on,
53

mon nat/c eager (2 + 3) B

seq (write ι (2 + 3)) (conres (read ι))

seq (write ι 5) (conres (read ι)) write ι (catch inl (inr (nat/c (read ι) B)))

write ι (catch inl (inr (nat/c 5 B)))

write ι (catch inl (inr 5))

write ι (inr 5)conres (read ι)

conres (inr 5)

5

Figure 5.1. Checking nat/c with eager.

and blame information. Note, however, that we do not evaluate the monitored term as part of

“mon”: our evaluation contexts presented in Figure 4.1 only evaluate the contract, strategy, and

blame expressions, allowing each strategy to individually control when to evaluate the term. Using

our mon form, we now encode the eager verification strategy in λπ
cs, following the interactions

described above:

Definition 5.2 (Eager Verification as a Pattern of Communication).

mon con eager exp B → let i = chan
in seq

(spawn (write i (catch inl (inr (con (read i) B)))))

(write i exp)

(conres (read i))

As indicated by (EM4), we use the conres helper to interpret the monitor result in the initiating

process; we define this helper procedure as follows:

Definition 5.3 (The conres helper procedure).

conres ∆
= λ x. case (x; y ▷ raise y; z ▷ z)

54

If the verifier left-injects the value (indicating a contract violation), we re-raise the error in the

process expecting the contract result, and, similarly, if the verifier right-injects it (indicating that

mon did not raise an error), we return it to the process1.

5.2.1. Predicate Monitoring with Eager Verification

To demonstrate verification structure in action, consider checking the predicate contract nat/c (again

defined as “pred/c (λ x. x ≥ 0)”):

{⟨1 + mon nat/c eager e B⟩π0}

⇒∗ {⟨1 + (seq (spawn (write ι (catch inl (inr (nat/c (read ι) B)))))

(write ι e)

(conres (read ι))⟩π0

⇒∗ {⟨1 + (seq (write ι e) (conres (read ι))⟩π0

, ⟨write ι (catch inl (inr (nat/c (read ι) B)))⟩π1}

⇒∗ {⟨1 + (seq (write ι v) (conres (read ι))⟩π0

, ⟨write ι (catch inl (inr (nat/c (read ι) B)))⟩π1}

⇒∗ {⟨1 + (conres (read ι))⟩π0

, ⟨write ι (catch inl (inr (nat/c v B)))⟩π1}

In this example, the user process (π0) creates a verification process (π1) at line 2, evaluates the

monitored term in the user process, sends this value to the monitoring process (line 4), and,

finally, performs a blocking read to retrieve the verification result. When v = 5, this verification

computation ensures that 5 is a natural number, right-injects the result, and writes it across the

communication, ultimately yielding 6 as the user program result:

⇒∗ {⟨1 + (conres (read ι))⟩π0 , ⟨write ι (catch inl (inr (nat/c 5 B)))⟩π1}

⇒∗ {⟨1 + (conres (read ι))⟩π0 , ⟨write ι (inr 5)⟩π1}

⇒∗ {⟨1 + (conres (inr 5))⟩π0 , ⟨unit⟩π1}

⇒∗ {⟨6⟩π0 , ⟨unit⟩π1}

Similarly, when v = -1, this computation detects the contract violation, left-injects the blame

information (signaling a contract error), and reports this left-injected blame value to conres in the

1If, for some reason, a monitor causes a secondary error to occur, such as by violating a different contract as part of
its verification, the mon/conres mechanism also ensures this error is properly propagated to the initiating evaluator.
Our pair contract example later in this section utilizes this behavior to propagate a subcontract violation.

55

{⟨fst (mon nat-pair/ceager eager (5, -1) B)⟩π0}
⇒∗ {⟨fst (conres (read ι))⟩π0

, ⟨write ι (catch inl (inr (nat-pair/ceager (5, -1) B)))⟩π1}
⇒∗ {⟨fst (conres (read ι))⟩π0

, ⟨write ι (catch inl (inr (mon nat/c eager (fst (5, -1)) B
,mon nat/c eager (snd (5, -1)) B)

))⟩π1

⇒∗ {⟨fst (conres (read ι))⟩π0

, ⟨write ι (catch inl (inr (5,mon nat/c eager (snd (5, -1)) B)))⟩π1

, ⟨unit⟩π2}
⇒∗ {⟨fst (conres (read ι))⟩π0

, ⟨write ι (catch inl (inr (5, conres (read ι2))))⟩π1

, ⟨unit⟩π2 , ⟨write ι2 (catch inl (inr (nat/c -1 B)))⟩π3}
⇒∗ {⟨fst (conres (read ι))⟩π0

, ⟨write ι (catch inl (inr (5, conres (inl B))))⟩π1

, ⟨unit⟩π2 , ⟨unit⟩π3}
⇒∗ {⟨fst (conres (read ι))⟩π0 , ⟨write ι (catch inl (inr (5, raise B)))⟩π1 , ⟨unit⟩π2 , ⟨unit⟩π3}
⇒∗ {⟨fst (conres (read ι))⟩π0 , ⟨write ι (inl B)⟩π1 , ⟨unit⟩π2 , ⟨unit⟩π3}
⇒∗ {⟨fst (conres (inl B))⟩π0 , ⟨unit⟩π1 , ⟨unit⟩π2 , ⟨unit⟩π3}
⇒∗ {⟨raise B⟩π0 , ⟨unit⟩π1 , ⟨unit⟩π2 , ⟨unit⟩π3}

Figure 5.2. Enforcing nat-pair/ceager on the pair (5, -1).

initiating process, raising an error in π0:

⇒∗ {⟨1 + (conres (read ι))⟩π0 , ⟨write ι (catch inl (inr (nat/c -1 B)))⟩π1}

⇒∗ {⟨1 + (conres (read ι))⟩π0 , ⟨write ι (catch inl (raise B))⟩π1}

⇒∗ {⟨1 + (conres (read ι))⟩π0 , ⟨write ι (inl B)⟩π1

⇒∗ {⟨1 + (conres (inl B))⟩π0 , ⟨unit⟩π1}

⇒∗ {⟨raise B⟩π0 , ⟨unit⟩π1}

In each case, the user process performs steps (EU1)–(EU4), suspending its computation and awaiting

the verification result, while the monitoring process performs (EM1)–(EM4), communicating the

contract result to the user process. Taken together as a pattern of communication, this interaction

models our eager contract verification behavior.

5.2.2. Pair and Function Contracts with Eager Verification

Recall that eager monitors may “over-evaluate” their input, detecting and signaling contract viola-

tions for unused values. In faithfully recreating eager monitoring, we have preserved this property.
56

For example, we may define and verify an eager variation of nat-pair/c from Chapter 2 using our

revised pair/c operation as:

nat-pair/ceager ∆
= pair/c nat/c eager nat/c eager (35)

Now, we consider evaluating

fst (mon nat-pair/ceager eager (5, -1) B)

We give a trace in Figure 5.2. This interaction results in an error in the user process (π0) because

-1 is not a natural number, and the monitor reports this verification result, ultimately re-raising

the error in the user process via conres. Notice that there are three monitoring evaluators in our

trace: the monitoring evaluator checking nat-pair/ceager (π1), the evaluator checking nat/c on the

first element of the pair (π2), and the evaluator checking nat/c on the second element of the pair

(π3). This separation and interaction mirrors our previous description of eager checking: at each

level, the initiating evaluator writes a value across a channel and awaits the monitoring evaluator’s

result. Using the raise and catch infrastructure at each monitoring process allows us to propagate

blame errors to the initiating process.

Function contracts proceed similarly, but without the nesting monitors. Using our revised fun/c
combinator, we may define a function contract as:

nat-fun/ceager ∆
= fun/c nat/c eager nat/c eager (36)

For function contracts, the user portion of the program performs the function application be-

tween checking the pre- and post-condition, explicitly evaluating the application in the user pro-

cess before verifying the post-condition contract. To illustrate this behavior, consider monitoring

nat-fun/ceager on “λ x. 1”, which follows the trace given in Figure 5.3. As evaluation proceeds,

the term

((λ x. 1) (mon nat/c eager 5 (invert B)))

occurs in the user process, triggering the pre-condition check while the post-condition check awaits

the function result. After verifying the pre-condition, the user evaluator performs the actual

function application “(λ x. 1) 5”.

5.2.3. Embedding Findler and Felleisen [36] into λπ
cs

Our goal in this work is to construct a single, unified framework for contract semantics, a sort of

“assembly language” target for recreating, understanding, and comparing these semantics and, more

57

{⟨(mon nat-fun/ceager eager (λ x. 1) B) 5⟩π0}
⇒∗{⟨(λ x. mon nat/c eager (λ x. 1) (mon nat/c eager x (invert B)) B) 5⟩π0

, ⟨unit⟩π1}
⇒∗{⟨mon nat/c eager (λ x. 1) (mon nat/c eager 5 (invert B)) B⟩π0}
⇒∗{⟨seq (write ι ((λ x. 1) (mon nat/c eager 5 (invert B)))) (conres (read ι))⟩π0

, ⟨write ι (catch inl (inr (nat/c (read ι) B)))⟩π2}
⇒∗{⟨seq (write ι ((λ x. 1) (conres (read ι′)))) (conres (read ι))⟩π0

, ⟨write ι (catch inl (inr (nat/c (read ι) B)))⟩π2

, ⟨write ι′ (catch inl (inr (nat/c 5 (invert B))))⟩π3}
⇒∗{⟨seq (write ι ((λ x. 1) 5)) (conres (read ι))⟩π0

, ⟨write ι (catch inl (inr (nat/c (read ι) B)))⟩π2}
⇒∗{⟨seq (write ι 1) (conres (read ι))⟩π0

, ⟨write ι (catch inl (inr (nat/c (read ι) B)))⟩π2}
⇒∗{⟨1⟩π0 , ⟨unit⟩π1 , ⟨unit⟩π2 , ⟨unit⟩π3}

Figure 5.3. Enforcing nat-fun/ceager on the function (λ x. x) with input 5, eliding process
of the form ⟨unit⟩π except in the last step.

generally, runtime verification. To this end, we take a moment to perform a sort of sanity check by

proving that eager runtime verification in λπ
cs simulates the runtime verification mechanisms of the

λCON calculus presented by Findler and Felleisen [36] (given in Figure A.1), up to alpha-equivalence

and unit elimination. (The below is only a sketch of the proof; we give the full proof in Appendix A.)

First, we simplify the language λCON as follows: we remove list and fixpoint operations (since

neither are relevant to the discussion) and, more importantly, their outer val rec form, defined as

follows (wherein Findler and Felleisen [36] also define evaluation contexts such that the recursive

bindings are evaluated before the form’s body):

p = d · · · c
d = val rec x : c = c

Our simulation works via three translation relations from λCON to λπ
cs, defined as “⇝”, “→→e”,

and “→→v” in Appendix A as Figure A.2 and Figure A.3. This translation relies on one additional

modification to λCON : Findler and Felleisen [36] use their language’s if operation to perform pred-

icate contract verification, and we must be able to identify when such an expression is a contract

verification expression (as opposed to a conditional expression in the user program portion) so that

we can extract it into a separate process. In order to distinguish between conditionals that are part
58

of contract verification (e.g., if contract value then value else error) from other if expressions, we

“recolor” the if expressions to indicate their origin:

• We color each if expression that originates in the user program with ◦, indicating it is part of

the user program.

• We modify the reduction relation “→” in λCON to produce if• forms for contract verification:

C[V contract(V2),p,n] −→ C[if• V2 (V) then V else blame(p)]

Evaluation for both if◦ c then c else c and if• c then c else c otherwise proceed as if c then c else c in

λCON , and now our translation can determine which if expressions are part of contract enforcement

in order to correctly translate them into λπ
cs.

Using this recoloring, we define the “⇝” operator to relate a term c with an expression e, a set of

new channels K, and a set of processes P , where the translated expression will fill process π0, using

“→→e” and “→→v” as helper relations to translate terms and values in λCON into equivalent term-level

expressions in λπ
cs respectively.

Using this translation, we state the main embedding theorem:

Lemma 5.1 (Embedding Reduction). If c ∈ λCON such that · ⊢ c : t (that is, c is well-typed),

c −→ c′, and c ⇝ (K, P, e) and c′ ⇝ (K ′, P ′, e′), then K, {π0}, {⟨e⟩π0}+P ⇒∗ K ′′, {π0}, P ′′

such that K ′′, {π0}, P ′′ =α,unit K ′, {π0}, {⟨e′⟩π0}+ P ′.

Proof. (sketch). The proof proceeds by induction on −→, such that, if c −→ c′, then its trans-

lation e will reduce to e′ in zero or more steps using the ⇒ reduction. The crux of the transla-

tion hinges on differentiating between contract-checking conditional terms and other conditional

branching operations, using our recolored if expressions to ensure we correctly translate contract

verification forms as contract monitoring structures. □

Next, we state the embedding theorem as:

Theorem 5.1 (Embedding Correctness). If c ∈ λCON such that · ⊢ c : t, c −→∗ V , c ⇝ (K, P, e),

and V →→v v, then K, {π0}, {⟨e⟩π0}+ P 7−→∗ K ′, {π0}, ⟨v⟩π0 + P ′.

Proof. First, no translation will produce a spawnf form, and thus T remains constant. Then the

proof proceeds by induction on the length of −→∗ and Lemma 5.1. □
59

This proof demonstrates that our approach to eager monitoring faithfully recreates the original

presentation and, more generally, that defining contracts as patterns of communication preserves the

behavior of previous models while exposing their internal workings at a finer granularity. Additional

simulation proofs will be more complex but follow this same approach: syntactic munging plus a

little process management. We provide the full proof in Appendix A.

5.2.4. The Drawbacks of Eager Verification

As in §2.2, the examples presented in this section illustrate the over-eager nature of eager verifi-

cation: while the user program did not inspect the second element of the pair “(5, -1)”, and the

function “λ x. 1” did not use its argument, the monitoring process still verified that each was a

natural number and signalled an error. Using our revised encoding of eager verification as indi-

vidual processes, we can now see that the fundamental problem is preemption: eager evaluation

explicitly suspends the initiating evaluator while verifying the contract, only resuming the initiating

evaluator once verification is complete, tying the overall computation performance to the contract

system’s performance. If the user evaluator did not wait for the monitor result, however, the overall

performance would be decoupled from the contract system, helping to alleviate this situation. In

our λπ
cs framework, we can provide this alternative variation on verification by merely varying the

pattern of communication between these evaluators.

5.3. Semi-Eager Contract Verification—Postponing Contract Verification

Our next monitoring strategy is semi-eager contract verification, indicated with the semi strategy

parameter. Recall that, in semi-eager verification, the monitor must suspend verification until the

user evaluator demands the result. In Chapter 2, we described this mechanism as “boxing up” the

contract and value; to replicate this behavior in λπ
cs, we use the delay and force operators to suspend

and later resume verification.

Using this model, semi-eager verification performs a single action at assertion time:

(SU1) creates a delayed expression d that, when forced, will perform verification, and returns it

to the user.

When a process later forces this delayed expression, the forcing process (which is not necessarily

the initiating process) proceeds with “eager-style” verification, wherein the forcing process:
60

(SU2) creates a new communication channel ι;

(SU3) spawns a monitoring process to evaluate the contract and communicate the result via ι;

(SU4) provides the (evaluated) subject value to the monitoring process across ι;

(SU5) and retrieves the result across ι and handles them (via conres).

As with eager verification, the monitoring process:

(SM1) receives the subject value v across ι;

(SM2) runs contract c on the value with the provided blame information;

(SM3) injects the result appropriately;

(SM4) and writes the injected value across ι to the user process.

This pattern of interaction is almost identical to eager verification, synchronizing at process states

(SU4, SM1) and (SU5, SM4): the only difference is that the verifier captures this entire computation

in a delayed expression (at SU1), giving the initiating evaluator freedom to either invoke or ignore

the verification as necessary. We present this interaction in Figure 5.4, and we extend our definition

of mon with this encoding:

Definition 5.4 (Semi-Eager Verification as a Pattern of Communication).

mon con semi exp B → delay
(let i = chan
in seq

(spawn (write i (catch inl (inr (con (read i) B)))))

(write i exp)

(conres (read i)))

This implementation directly corresponds to the eager implementation in Definition 5.2, delaying

the entire verification expression (via a delay highlighted in yellow to show its addition) in order to

“package up” the verification computation until an evaluator forces it.
61

let x = mon nat/c semi (2 + 3) B
in (f 5) + (force x)

let x = delay ...
in (f 5) + (force x)

(f 5) + (force (delay ...))

120 + (force (delay ...))

120 + (seq (write ι (2 + 3)) (conres (read ι)))

120 + (seq (write ι 5) (conres (read ι))) write ι (catch inl (inr (nat/c (read ι) B)))

write ι (catch inl (inr (nat/c 5 B)))

write ι (catch inl (inr 5))

write ι (inr 5)120 + (conres (read ι))

120 + (conres (inr 5))

120 + 5

125

Figure 5.4. Checking nat/c with semi. The monitoring process is not created until the
initiating evaluator forces the mon result. We indicate the monitoring process with blue .

5.3.1. Predicate Monitoring with Semi-Eager Verification

We may now use the semi strategy keyword to perform semi-eager predicate contract verification,

such as verifying that 5 is a natural number:

{⟨force (mon nat/c semi 5 B)⟩π0}

⇒∗ {⟨force (delay (let i = chan in (seq (spawn ...) (write i 5) (conres (read i)))))⟩π0}

⇒∗ {⟨let i = chan in (seq (spawn ...) (write i 5) (conres (read i)))⟩π0}

⇒∗ {⟨conres (read ι))⟩π0 , ⟨write ι (catch inl (inr (nat/c 5 B)))⟩π1}

⇒∗ {⟨5⟩π0 , ⟨unit⟩π1}
62

Observe the force wrapping the verification expression: if we had not included it, the program

would yield the delay verification expression as the final result:

{⟨mon nat/c semi 5 B⟩π0}

⇒∗ {⟨delay (let i = chan in (seq (spawn ...) (write i 5) (conres (read i))))⟩π0}

The program Figure 5.4 proceeds similarly: the verification creates a delayed cell, and the property

goes unchecked until the cell is forced2.

5.3.2. Pair and Function Contracts with Semi-Eager Verification

For structural contracts, this system of delaying and forcing contracts gives programmers immense

control over which parts of the structure to verify. For example, a semi-eager pair contract that

ensures each element is a natural number may eschew checking unused parts of the pair:3

{⟨force (fst (force (mon nat-pair/csemi semi (5, -1) B)))⟩π0}

⇒∗ {⟨force (fst (force (delay ...“check nat-pair/csemi on (5, -1)”...)))⟩π0}

⇒∗ {⟨force (fst (conres (read ι)))⟩π0 , ⟨write ι (inr (delay ..., delay ...))⟩π0}

⇒∗ {⟨force (fst (delay ...“check nat/c on 5”... , delay ...“check nat/c on -1”...))⟩π0 , ...}

⇒∗ {⟨force (delay ...check nat/c on 5...)⟩π0 , ⟨unit⟩π1}

⇒∗ {⟨5⟩π0 , ⟨unit⟩π1 , ⟨unit⟩π2}

In this example, we assert nat-pair/csemi on a pair, yielding a delayed reference that, when forced,

verifies nat-pair/csemi on (5, -1). This results in a pair of delayed cells that, when forced, will each

verify the appropriate subcontract on the appropriate subcomponent of the pair, i.e., the first will

monitor nat/c on 5 and the second will monitor nat/c on -1. The last part of this trace retrieves the

first element and forces it, verifying 5 is a natural number, and returns the monitor result. Since

we never force the second element, we never attempt to verify that -1 is a natural number, and

thus the program terminates without signaling a contract violation.

In general, the program only needs to force values it intends to use, and, as a result, the program

verifies only those values required for its final result.

2This potential for unforced delay cells is why we check delay e at the type of e: otherwise, not only would each
delay flow through the program’s type system, but the overall type of mon would depend on the strategy. This strat-
egy-dependent type approach gets particularly problematic in the context of higher-order function contracts, where
we must determine the input function’s type based on the strategies used in the function contract’s subcomponents.
3The nat-pair/csemi contract is similar to nat-pair/ceager, replacing eager with semi.

63

5.3.3. On the Use of Delay and Force

In semi monitoring (and promise, below), we use delay to encode unevaluated expressions as values

that the user must explicitly force. We take this as a necessary evil to facilitate our discussion: some

verification strategies require fine-grained delaying and forcing behavior in call-by-value calculi to

correctly recreate less-eager evaluation mechanisms. We elect to do this with explicit delay and force

operations in our presentation in order to clarify the nature of the evaluator interactions for these

strategies, requiring the user programs to propagate force throughout their expressions in order

to better clarify the nature of these evaluator interactions. We tolerate this intrusion to better

examine and explain the nature of these synchronizing monitors so that the working semanticist

may directly compare how and when the user evaluator interacts with them.

In a programming language intended for everyday use, however, this forcing mechanism will clutter

the program and inconvenience the programmer. As such, we suggest that, when adding such a

feature to a programming language implementation, the implementer should conceal the delayed

expressions from the user, opting for implicit forcing at evaluation sites (using some transpar-

ent structure such as chaperones [79] for managing delayed structures) to remove this syntactic

complexity. We include such a variant of λπ
cs, λπ

cd, that reflects this style of implicit forcing in

Appendix B.

5.3.4. The Drawbacks of Semi-Eager Verification

As with its presentation in §2.3, this semi-eager enforcement style may still couple the user and

monitor evaluators, suspending the user program during each verification step: when forcing the

first subcomponent of the pair in our previous example, the user program must wait for the verifi-

cation result before proceeding. Our next three strategies leverage the concurrent facilities in λπ
cs

to address this problem.

5.4. Promise-based Contract Verification—Concurrent Checking with Synchronization

Our next contract verification strategy is promise-based verification, indicated with the promise

parameter. In this verification approach, monitor expressions return “promises” to the initiating

evaluator while verification proceeds concurrently. As with the box-driven description in Chapter 2,

we utilize delay (and read’s blocking nature) to provide promise-like behavior in verification results:

when the initiating process forces the promise, it reads the contract result from appropriate channel,
64

blocking until the concurrent verification is complete (in the case that the verification has previously

finished, the initiating process receives the result immediately).

Our implementation of promises follows a pattern of communication similar to our previous veri-

fication strategies, with a critical difference: after creating the verification process, the initiating

process constructs a promise that will retrieve the verification result when forced. To accomplish

this, the initiating process:

(PU1) creates a new communication channel ι;

(PU2) spawns a monitoring process that will evaluate the contract;

(PU3) provides the (evaluated) subject value to the monitoring process across ι;

(PU4) and, finally, returns delay (conres (read ι)) as our “promise.”

Dually, the monitoring process:

(PM1) receives the subject value v across ι;

(PM2) runs contract c on the value;

(PM3) injects the result appropriately;

(PM4) and writes the injected value across ι to the user process.

This interaction contains two evaluator synchronization points: first at (PU3, PM1), and, later, at

(PM4), when a process (not necessarily the initiating one) forces the delayed expression created in

(PU4). The forced expression performs a blocking read across ι, receiving the contract result via

conres. We present this interaction in Figure 5.5, and we extend mon to support promise as:

Definition 5.5 (Promise-Based Verification as a Pattern of Communication).

mon con promise exp B → let i = chan
in seq

(spawn (write i (catch inl (inr (con (read i) B)))))

(write i exp)

(delay (conres (read i))))

As with semi, this implementation directly corresponds to the eager implementation in Defini-

tion 5.2, aside from the addition of delay to delay reading the result. This should be unsurprising:

the variation between eager and promise-based contract monitoring is precisely when the initiat-

ing evaluator receives the answer, allowing programmers to perform secondary computations while

verification continues concurrently.
65

let x = mon nat/c promise (2 + 3) B
in (f 5) + (force x)

let x = seq (write ι (2 + 3)) (delay ...)
in (f 5) + (force x)

let x = seq (write ι 5) (delay ...)
in (f 5) + (force x)

let x = delay (conres (read ι))
in (f 5) + (force x)

(f 5) + (force (delay (conres (read ι))))

120 + (force (delay (conres (read ι))))

120 + (conres (read ι))

120 + (conres (inr 5))

120 + 5

125

write ι (catch inl (inr (nat/c (read ι) B)))

write ι (catch inl (inr (nat/c 5 B)))

write ι (catch inl (inr 5))

write ι (inr 5)

Figure 5.5. Checking nat/c with promise. The monitoring process does not communicate
its final result until the initiating evaluator forces the mon result. The expression (f 5) is
a stand-in for additional computation in the initiation process before synchronization. We
indicate the monitoring process with blue .

5.4.1. Verifying Contracts with Promise-Based Verification

Verifying a predicate contract with a promise-based structural contract creates a separate process

to perform contract verification, yielding a promise in the initiating process that retrieves the

verification result when forced.

{⟨force (mon nat/c promise 5 B)⟩π0}

⇒∗ {⟨force (delay (conres (read i)))⟩π0 , ⟨write i (catch inl (inr (con 5 B)))⟩π1}

⇒∗ {⟨conres (read ι))⟩π0 , ⟨write ι (catch inl (inr (nat/c 5 B)))⟩π1}

⇒∗ {⟨5⟩π0 , ⟨unit⟩π1}
66

If we had not included force, the program would have yielded a delay as the final result. Unlike

our previous semi strategy, however, promise-based monitoring introduces an opportunity for par-

allel performance: the promise strategy allows contract verification to happen while the initiating

process continues. For example, we can begin verifying a contract while performing additional

computations, such as in Figure 5.5, and the following trace:

let x = mon nat/c promise 5 B

y = factorial 50
in (force x) + y

If the promise-verified contract proceeds in parallel, and the verification is complete by the time the

program reaches the body of the let structure, then the user program experiences minimal contract

overhead.

5.4.2. Pair and Function Contracts with Promise-Based Verification

Structural contracts follow directly from the interactions we have previously presented, allowing us

to begin verification on subcomponents before retrieving them. For example, nat-pair/cprom will

create three concurrent processes that work together to ensure that a pair contains two natural

numbers, returning each verification results as the user requests it.

We provide such a trace in Figure 5.6, wherein each subcomponent contract creates a new promise-e-

valuation process as subcontract enforcement proceeds, resulting in three contract evaluators: the

evaluator that performs the outer pair/c contract and one for each of the two nat/c subcontracts.

Unlike the evaluator interaction pattern in eager verification, however, each of these evaluators pro-

ceeds independently: the pair/c process returns a pair of new “promises” to the initiating evaluator

while the two nat/c subcontracts proceed with verification. Moreover, even though we create these

promises in a cascading manner, the synchronizing evaluator (here π0) retrieves each result directly

from the appropriate evaluator instead of receiving the complete result from the initial verification

evaluator. Additionally, since the second element of the pair is never retrieved, the error is never

reported to π0, and thus the program does not raise a top-level error.

Function contracts proceed similarly, evaluation proceeds in the function’s body while pre-condition

verification proceeds concurrently, allowing us to perform additional operations as part of the

function’s body before retrieving and using the argument.

67

{⟨(λ x. force (fst (force x))) (mon nat-pair/cprom promise (5, -1) B)⟩π0}
⇒∗ {⟨(λ x. force (fst (force x))) (delay (conres (read i)))⟩π0

, ⟨write i (catch inl (inr (nat-pair/cprom (5, -1) B)))⟩π1}
⇒∗ {⟨(λ x. force (fst (force x))) (delay (conres (read i)))⟩π0

, ⟨write i (catch inl (inr ((delay (conres (read i1))), (delay (conres (read i2))))))⟩π1

, ⟨write i1 (catch inl (inr (nat/c 5 B)))⟩π2

, ⟨write i2 (catch inl (inr (nat/c -1 B)))⟩π3}
⇒∗ {⟨force (fst (conres (read i)))⟩π0

, ⟨write i (inr ((delay (conres (read i1))), (delay (conres (read i2))))))⟩π1

, ⟨write i1 (catch inl (inr 5))⟩π2

, ⟨write i2 (catch inl (inr (nat/c -1 B)))⟩π3}
⇒∗ {⟨force (fst ((delay (conres (read i1))), (delay (conres (read i2))))))⟩π0

, ⟨unit⟩π1

, ⟨write i1 5⟩π2

, ⟨write i2 (catch inl raise B)⟩π3}
⇒∗ {⟨force (delay (conres (read i1))))⟩π0

, ⟨unit⟩π1

, ⟨write i1 5⟩π2

, ⟨write i2 (catch inl (raise B))⟩π3}
⇒∗ {⟨conres (read i1)⟩π0 , ⟨unit⟩π1 , ⟨write i1 5⟩π2 , ⟨write i2 (inl B)⟩π3}
⇒∗ {⟨5⟩π0 , ⟨unit⟩π1 , ⟨write i1 5⟩π2 , ⟨write i2 (inl B)⟩π3}

Figure 5.6. Enforcing nat-pair/cprom on the pair (5, -1) using promise.

5.4.3. Semi-Eager and Promise-Based Verification

Consider the connection between semi-eager and promise-based monitoring: in each case, the initi-

ating process returns the delayed expression that, when forced, yields the verification result. As a

result, these verification strategies have observationally equivalent behavior in the initiating process

in terms of when errors occur:

{⟨force (fst (force (mon nat-pair/csemi semi (5, -1) B)))⟩π0}

⇒∗ {⟨force (delay (chan(λ i. seq ...)))⟩π0 , ⟨unit⟩π1}

⇒∗ {⟨5⟩π0 , ⟨unit⟩π1 , ⟨unit⟩π2}

{⟨force (fst (force (mon nat-pair/cprom promise (5, -1) B)))⟩π0}

⇒∗ {⟨force (delay (conres (read ι)))⟩π0 , ⟨unit⟩π1}, ⟨(write ι inl 5)⟩π1}

⇒∗ {⟨5⟩π0 , ⟨unit⟩π1 , ⟨unit⟩π2}

In both semi and promise verification, the initiating process has precise control over how to retrieve

the contract result, using the same mechanism in both places; this equivalence, however, assumes
68

that the monitored term and contract are both pure; if either is not, semi and promise would no

longer be interchangeable.

More formally:

Theorem 5.2 (Semi-Eager and Promise-Based Local Observational Equivalence). For some context

E, contract e1, monitored term e2, and blame label set B such that e1 and e2 are both effect-free (i.e.,

they do not create or communicate with additional processes, including contract verification) and

E[mon e1 semi e2 B] and E[mon e1 promise e2 B] are well-formed (i.e., well-typed) expressions,

either:

• there is some K1, P1 and K2, P2 such that K,T, P + ⟨E[mon e1 semi e2 B]⟩π ⇒∗ K1, T, P1 +

⟨v⟩π and K,T, P + ⟨E[mon e1 promise e2 B]⟩π ⇒∗ K2, T, P2 + ⟨v⟩π;

• there is some K1, P1 and K2, P2 such that K,T, P + ⟨E[mon e1 semi e2 B]⟩π ⇒∗ K1, T, P1 +

⟨raise B⟩π and K,T, P + ⟨E[mon e1 promise e2 B]⟩π ⇒∗ K2, T, P2 + ⟨raise B⟩π;

• or both diverge.

Proof (Sketch). First, we observe that each of semi and promise will create a delayed expression

in process π. If E does not force this delay, the program will complete identically in either case.

If, however, E forces this delay, we must inspect the outcome of the contract enforcement. First,

note that, since e1 and e2 are effect-free, well-formed expressions, there are some v1 and v2 such

that e1 7−→∗ v1 and e2 7−→∗ v2 (following our type soundness theorem presented in Chapter 4). In

either case, the monitoring evaluator will then evaluate v1 v2 B, which has three possible outcomes:

• v1 v2 B →∗ v, some value;

• v1 v2 B →∗ raise B, an error;

• or v1 v2 B diverges.

In the first two cases, process π receives the resultant value as (or inl B) under either strategy,

yielding K + K ′, T, P + P ′ + ⟨E[conres (inr v)]⟩π (or E[conres (inl B)]), where K ′ and P ′ will be

identical in the case of flat contracts, but may differ if v1 is a structural contract that initiates

additional checks. Finally, in the third case, if the process diverges, the forcing location in E will

block forever, causing the configuration to diverge. □
69

This suggests that promise-based verification has the most utility when either (a) both the contract

and monitored term are pure, or (b) the side effects are independent of the computation’s outcome

and each other.

5.4.4. The Drawbacks of Promise-Based Verification

Since semi-eager and promise-based verification are (typically) observationally equivalent, promise-based

verification suffers some of the same issues as discussed in the previous section, including under-eval-

uation and being continuously driven by the user evaluator. In addition, promise-based verification

may cause problems with effectful contracts by performing the effectful portions “out of order,”

leading to difficult-to-debug problems. Next, we will explore concurrent contracts, which avoid the

problems of later synchronization by eschewing the need to retrieve contract results.

5.5. Concurrent Contract Verification—Complete Evaluator Decoupling

In our next strategy, concurrent, the monitoring evaluator proceeds concurrently without reporting

its result, terminating in a value or error. In either case, the initiating evaluator is free to continue

without later synchronization. Modeled as patterns of communication, the initiating process:

(CU1) creates a new communication channel ι;

(CU2) spawns a monitoring process that will evaluate the contract;

(CU3) provides the (evaluated) subject value to the monitoring process across ι;

(CU4) and continues with the evaluated subject value.

Dually, the monitoring process:

(CM1) receives the subject value v across ι;

(CM2) and runs the contract c on the value with the provided blame information.

These two evaluators synchronize once, at (CU3, CM1), to communicate the subject value. We

present this interaction in Figure 5.7 (with the monitoring process indicated with blue), where

the new, monitoring evaluator proceeds without further interaction. We extend mon with this

encoding of concurrent as:

70

5 + mon nat/c concurrent -1 B

5 + (seq (write ι -1) -1)

5 + -1

4

nat/c (read ι) B

nat/c -1 B

raise B

Figure 5.7. Checking nat/c with concurrent. The monitoring process continues concurrently
while the initiating process computes the result.

Definition 5.6 (Concurrent Verification as a Pattern of Communication).

mon con concurrent exp B → let i = chan
in seq (spawn (con (read i) B))

(let x = exp in seq (write i x) x)

(37)

This implementation starts a monitoring verifier via spawn, communicates the monitored term to the

verifier, and immediately continues with the user program. By using spawn, concurrent contracts

represent contracts that may not finish: using our previous definition of answer configurations

(Definition 4.1), we see that concurrent contracts represent contracts that may not finish; if the

contract is still running when π0 terminates, the configuration terminates, discarding the verifier.

As a result, this “best-effort” verification method allows us to view contracts as “soft” specifications.

5.5.1. Predicate Monitoring with Concurrent Verification

With our definition of the concurrent verification strategy in place, we can use it to verify an

expression is a natural number:

{⟨5 + (mon nat/c concurrent 3 B⟩π0} ⇒∗{⟨8⟩π0, ⟨3⟩π1} (38)

{⟨5 + (mon nat/c concurrent -1 B⟩π0} ⇒∗{⟨4⟩π0, ⟨...⟩π1} or
{⟨...⟩π0, ⟨raise B⟩π1} or
{⟨4⟩π0, ⟨raise B⟩π1}

(39)

We use “or” in the second example because our “⇒” relation is non-deterministic: without impos-

ing a scheduling order for processes, the monitor may or may not complete before the initiating

evaluator, hence the description of concurrent as “best-effort” checking.
71

5.5.2. Function Contracts with Concurrent Verification

For structural and functional contracts, concurrent verification will yield numerous, unsynchronized

processes, potentially reporting errors non-deterministically if there are multiple contract violations.

This has the downside of so-called “heisenbug”-style contract violations (wherein different traces

may terminate with different errors), but the upside is that programmers may utilize concurrent

behavior for weak, long-lived contracts. It is also imaginable that we may report these violations as

“warnings” to the programmer instead, indicating problematic values without bringing the program

to a halt. For example, we may define a new pair contract as:

nat-pair/cconc ∆
= pair/c nat/c concurrent nat/c concurrent (40)

Enforcing nat-pair/cconc will yield a configuration with four processes, and multiple possible out-

comes:
{⟨fst (mon nat-pair/cconc concurrent (5, -1) B⟩π0}

⇒∗{⟨5⟩π0, ⟨(5, -1)⟩π1, ⟨5⟩π2, ⟨...⟩π3} or
{⟨...⟩π0, ⟨(5, -1)⟩π1, ⟨5⟩π2, ⟨raise B⟩π3} or
{⟨...⟩π0, ⟨...⟩π1, ⟨...⟩π2, ⟨raise B⟩π3} or
etc...

Because we do not impose scheduling, and each mon form with the concurrent strategy spawns

a new thread, it is possible for a subcontract to signal a violation before its parent contract is

complete.

Similarly, consider this concurrent verification behavior with a function contract:

{⟨(mon (fun/c nat/c concurrent nat/c concurrent) eager (λ x. x + 1) B) 5⟩π0}

⇒∗{⟨(λ x. mon nat/c concurrent ((λ x. x + 1) (mon nat/c concurrent x (invert B))) B) 5⟩π0

, ⟨unit⟩π1}

⇒∗{⟨mon nat/c concurrent ((λ x. x + 1) (mon nat/c concurrent 5 (invert B))) B⟩π0

, ⟨unit⟩π1}

⇒∗{⟨mon nat/c concurrent ((λ x. x + 1) 5) B⟩π0 , ⟨unit⟩π1 , ⟨nat/c 5 (invert B))⟩π2}

⇒∗{⟨mon nat/c concurrent 6 B⟩π0 , ⟨unit⟩π1 , ⟨5⟩π2}

⇒∗{⟨6⟩π0 , ⟨unit⟩π1 , ⟨5⟩π2 , ⟨nat/c 6 B)⟩π3}

This verification trace has some additional irregularities of note:

(1) We verify the top-level mon with eager. If we had used concurrent, the function contract

combinator would have produced the monitored procedure in the monitoring process, and
72

the user program would have proceeded with “λ x. x + 1”. An alternative approach to

checking a function contract with concurrent could be running a sort of enumerative analysis

concurrently, checking the function against inputs for the remainder of the program’s run.

This approach, however, would require us to perform input-based dispatched to determine if

the value is a procedure (via, e.g., Racket’s procedure? operation [39]), removing our uniform

approach to contract verification. Clojure’s core.spec [50] adopts this style of verification

for higher-order function contracts, where higher-order function inputs are randomly checked

with sampled values to ensure they conform to the specification. We discuss it further in §5.7.

(2) The user process π0 proceeds without regard for the pre- or post-condition enforcement. While

this may not always be the case, based on scheduling, it further illustrates the “best-effort”

nature of concurrent verification.

Overall, this trace proceeds by verifying the pre- and post-condition concurrently, eschewing further

interactions with the user process. As a result, this concurrent verification allows the user evaluator

to proceed without awaiting the contract result, and, further, avoid additional overhead when

retrieving contract results. Ultimately, this concurrent strategy allows user computations to forgo

contract results in favor of a type of “succeed or interrupt” mechanism, allowing the program to

proceed without regard for valid verification results (and interrupting it in the case that a contract

violation is discovered).

5.5.3. The Drawbacks of Concurrent Verification

As we discussed in Chapter 2, this verification technique may often be “too weak” for properties

that the programmer must rely on and, as such, programmers may prefer to ensure the contract

monitor will eventually finish, regardless of later synchronization.

5.6. Finally-Concurrent Contract Verification—Verification Without Synchronization

In order to provide programmers with “start and forget” verification with stronger guarantees, we

introduce fconc verification. Similar to concurrent verification, fconc monitoring processes elides

secondary synchronization with the initiating process. Unlike concurrent, however, we ensure the

monitor completes before considering the configuration “done.” To this end, we use the spawn

variant spawnf , which creates a new process and adds its process identification number to a list of

final processes T , ensuring any answer configuration includes its full evaluation. This interaction
73

5 + mon nat/c fconc -1 B

5 + (seq (write ι -1) -1)

5 + -1

4

nat/c (read ι) B

nat/c -1 B

raise B

Figure 5.8. Checking nat/c with fconc. The initiating and monitoring processes each proceed
concurrently, and the green box indicates an answer configuration.

follows the concurrent interaction above, with a singular difference; in fconc, the initiating fconc

process:

(FU1) creates a new communication channel ι;

(FU2) spawns a final monitoring process that will evaluate the contract;

(FU3) provides the (evaluated) subject value to the monitoring process across ι;

(FU4) and continues with the evaluated subject value.

Dually, the final monitoring process:

(FM1) receives the subject value v across ι;

(FM2) and runs the contract c on the value with the provided blame information.

We present this interaction in Figure 5.8 (with the monitoring process colored blue), which is

nearly identical to Figure 5.7, with the addition of the answer configuration in green . The only

difference between fconc and concurrent is this notion of process finality, and thus its implemen-

tation only exchanges spawn for spawnf :

Definition 5.7 (Finally-Concurrent Verification as a Pattern of Communication).

mon con fconc exp B → let i = chan
in seq(spawnf (con (read i) B))

(let x = exp in seq (write i x) x)

(41)

74

When we use fconc to assert a contract, we may now trust that the contract will run to completion

before the program enters an answer configuration:

∅, {π0}; {⟨(mon nat/c fconc -1 B) + (mon nat/c fconc 3 B)⟩π0}

⇒∗{ι}, {π0, π1, π2};{⟨-1 + 3⟩π0 , ⟨nat/c -1 B⟩π1 , ⟨nat/c 3 B⟩π2}

⇒∗{ι}, {π0, π1}; {⟨2⟩π0{⟨raise B⟩π1 , ⟨nat/c 3 B⟩π2}

⇒∗{ι}, {π0, π1}; {⟨2⟩π0{⟨raise B⟩π1 , ⟨3⟩π2}

Even though one contract raised an error, we must still wait for each fconc contract to complete

before termination. Aside from this termination behavior, fconc continues exactly as concurrent

verification.

This alternative “start and forget” contract verification technique exposes a new avenue for ver-

ification: programmers can, e.g., read in a file and speculatively start examining and using the

input while being sure that, before the program completes, they will know the data is correct. It

may suffer from some of the same problems as we discuss in Chapter 2, including prolonging the

program to finalize verification.

5.7. Additional Verification Strategies in λπ
cs

In this work, we selected five strategies because of their frequency in the literature, their apparent

utility, and their direct encodings. Unsurprisingly, these are not the only variations on contract

verification. In this section, we briefly introduce and discuss three additional strategies, sketching

their encodings in the λπ
cs framework.

5.7.1. Random Checking.

Ergün et al. [33] and Dimoulas et al. [29] each describe random testing for program correctness,
which has since gained popularity in Clojure’s core.spec library[50]. These random testing meth-
ods verify higher-order function contracts using generative checking (i.e., producing sample inputs
to ensure that the function behaves correctly). We can replicate this behavior by introducing a
gen strategy that accepts a generator g and ensures the function adheres to its contracts for values

75

provided by this generator:

mon con (gen g) exp B →let i = chan
in seq (spawn (write i (catch inl (let f = (con (read i) B)

in (inr (seq (check-fn f g) f)))))

(write i exp)

(conres (read i))

(42)

If f is a function, the check-fn procedure (elided) will use the provided generator to randomly test

f before returning it; otherwise, following core.spec, this strategy behaves as eager verification.

5.7.2. Future Contracts.

Dimoulas et al. [27] introduce concurrent contracts via future contracts (discussed in Chapter 2),

which we have used as a basis for our promise contract verification. Recall that, in their original

presentation, future contracts sent terms and their contracts, as messages, to a secondary evaluator

for verification and retrieving results during effectful operations. It is straightforward to imagine

replicating this strategy in λπ
cs, sending contract-expression pairs to a global, concurrent verification

process and extending effectful operations with synchronization operations.

5.7.3. Lazy Contracts.

First described by Chitil et al. [17] as assertions (without blame mechanisms), Degen et al. [22]

later formalized lazy contract verification as allowing the user evaluator to “drive” the contract

evaluator: the idea is that contract verification should only inspect those terms and values that the

user program evaluates, and, as a result the verifiers “block” on unevaluated terms, awaiting their

usage in the user program to continue with verification. For example, verifying a predicate contract

on a pair will suspend verification until the user evaluator evaluates subcomponent of the pair; if

the user program never does, the monitor will never verify the contract. Degen et al. [24] present

an implementation of this system for Haskell, using individual call-by-need reference cells register

callbacks for contract monitors to driving the contract verification mechanism as these reference

cells are evaluated.

This model of monitoring, when translated into λπ
cs, demonstrates its intrusive interaction with the

main evaluator: to facilitate this user-driven monitoring, we must construct a layer of indirection

for both evaluators such that the user evaluator’s forcing an expression drives the lazy monitor. To

do this, we must recursively parse the input expression e, breaking it out into a structure for the

76

mon ord/c lazy (6, 5) B

drefι1,ι2

seq (write ι1 unit)
(read ι2)

(drefι4,ι5, drefι7,ι8)

(b1, b2)

b1 : 5 b2 : 6

ord/c ℓι3

· · · read ι3 · · ·

· · · (ℓι6, ℓι9) · · ·

Figure 5.9. Lazy contract communication.

user process to evaluate and a second, mirrored structure for the monitoring evaluator to wait on.

We provide a sample sketch of this approach on a pair contract in Figure 5.9, using so-called “lazy

references” ℓi that produce values as the user programs evaluates the delayed references.

Between this massive intrusion (and structural meta-operation in the form of building lazy refer-

ences), we can see that lazy evaluation is not particularly practical, and, furthermore, Degen et al.

[24] observe that such lazy verification violates basic blame consistency. Taken together, this sug-

gests that lazy contract verification ultimately has only questionable utility. That said, this is not

a shortcoming of λπ
cs: Degen et al. [22] hint at the intrusive nature, and, by encoding it in λπ

cs, we

have exposed the precise mechanisms such verification requires.

5.8. Mixing Strategies with Contracts in λπ
cs

Beyond choosing which strategy to use for each contract, programmers may also freely intermix

strategies in λπ
cs, yielding flexibility and utility beyond traditional contract systems. In this section,

we summarize our strategies so far, giving their implementations together in Figure 5.10, and

then showcase this additional advantage of λπ
cs by providing three examples: dependent function

contracts, a flexible binary-search tree, and a lazy tree fullness contract.

5.8.1. Dependent Function Contracts

Our first advanced contract in λπ
cs is fun/dc, a dependent variant of fun/c [36]. The idea is that the

post-condition contract takes the function’s argument as input before producing a contract, allowing

the post-condition contract to verify the function output in terms of the input. For example, we
77

mon con eager exp B → let i = chan
in seq

(spawn (write i (catch inl (inr (con (read i) B)))))
(write i exp)
(conres (read i))

mon con semi exp B → delay
(let i = chan
in seq

(spawn (write i (catch inl (inr (con (read i) B)))))
(write i exp)
(conres (read i)))

mon con promise exp B → let i = chan
in seq

(spawn (write i (catch inl (inr (con (read i) B)))))
(write i exp)
(delay (conres (read i))))

mon con concurrent exp B → let i = chan
in seq (spawn (con (read i) B))

(let x = exp in seq (write i x) x)

mon con fconc exp B → let i = chan
in seq (spawnf (con (read i) B))

(let x = exp in seq (write i x) x)

Figure 5.10. The aggregate contract verification strategies presented in Chapter 5.

can verify that a square root procedure behaves correctly as:

sqrt/dc := λ s1 s2 s3. fun/dc nat/c s1 (λ n. pred/c (λ m. (m ∗m) = (force n))) s2 s3

This contract allow us to ensure that a function’s result is exactly the square root of its input4. Note

that we have added a “preemptive” force in the post-condition to ensure that we will force the con-

tract before use, addressing those cases where the verification strategy used for the post-condition

input results in a delayed expression.

4This procedure should technically use some ϵ to ensure the result is within bounds to deal with floating-point errors,
but we elide this complexity for presentation.

78

We define this fun/dc combinator as:

fun/dc ∆
= λ con1 strat1 fcon2 strat2 stratp.

λ f b.

λ x. let input := mon con1 strat1 x (invert b)
postInput:= mon con1 stratp x (indy b)

in mon (fcon2 postInput) strat2 (f input) b

(43)

This definition differs from our definition of fun/c in Eqn. 34 as follows:

• In this definition we utilize the indy blame mechanism presented by Dimoulas et al. [27],

wherein we verify the pre-condition monitor on the function input twice: first using standard

pre-condition blame (as invert blame), and a second time with indy-style contract blame (as

“indy blame”), which will blame the post-condition contract if it misuses the input value, e.g.,

misapplying a procedure argument. Otherwise, as Dimoulas et al. [27] observe, the post-con-

dition may misuse the function input in a way that results in the blame labels indicating the

function itself is responsible for the error, resulting in incorrect blame assignment.

• Our λπ
cs definition of fun/dc introduces a new point of flexibility with dependent contracts:

a secondary possibility for control with the second verification site. We may use a different

strategy when checking the input for the post-condition than for the main function.

To further demonstrate this second point, consider our choice of strategy in sqrt/dc: when using the

eager strategy, we recover behavior akin to the behavior described by Dimoulas et al. [27]:

(mon (sqrt/dc eager eager eager) eager sqrt B) 25

This is not, however, the only option: since λπ
cs allows us to freely intermix strategies, we can

explore, for example, ensuring the pre-condition holds on the post-condition’s input via promise:

(mon (sqrt/dc eager eager promise) eager sqrt B) 25

When we apply the resultant contracted procedure to 25, the postInput check runs concurrently,

freeing up the user process to continue computing sqrt/dc while the secondary process concurrently

verifies the post-condition’s input contract. Consider, further, using semi-eager verification for each

sub-contract:

(mon (sqrt/dc semi semi semi) eager sqrt B) 25

79

In this example, the program forces the postInput variable after sqrt has completed. In larger

programs, where sqrt itself may throw an error, this can cut down on potential computation

repetition before the error. And these are only three examples!

This straightforward extension to a standard contract combinator begins to illustrate the immense

user control in multi-strategy verification: we can control complex contracts with secondary, hidden

behavior, precisely specifying how they interact with the user program at each verification step.

Our next two examples will further reinforce this additional flexibility.

5.8.2. A Flexible Binary-Search Tree Contract

Next, we revisit our strategy-parameterized binary tree contract from Chapter 3. While it is

possible to construct this contract using only the primitives in λπ
cs, we take some liberties here for

simplicity of presentation, namely:

• We assume a tree data structure in the form of leaf nodes and internal nodes

“node val tleft tright”, where we may directly match on trees with these constructors as5:

case (t; leaf▷ e1; node val tleft tright ▷ e2)

• We also assume a fixpoint operator µ as

(µf x.e) v → e[µf x.e/f][v/x]

Recall from Chapter 3 that our binary-search tree contract should act as follows:

• mon eager (bst/c eager) tree B will eagerly ensure its input is a binary-search tree;

• mon semi (bst/c semi) tree B will return a tree that will verify each node is correctly-ordered

as the program explores it;

• mon promise (bst/c promise) tree B will create a cascading chain of monitoring processes for

each node, and a program exploring the tree will synchronize with the appropriate processes

at each level;

• and mon concurrent (bst/c concurrent) tree B will concurrently enforce that the tree is a

binary-search tree using a similar set of cascading processes.

• and mon fconc (bst/c fconc) tree B will act the same as the concurrent contract, but force

the program to wait for verification to complete before terminating.

5We use these to avoid defining binary trees as a series of sum types.

80

Ideally, we would like to define bst/c in terms of a tree contract combinator tree/c. We can define

this structural contract combinator recursively as:

tree/c :=µ con cleaf sleaf cnode snode srec. (44)

λ tree b.

casetree (tree;

leaf ▷mon cleaf sleaf leaf b;
node v tl tr ▷let crec = con cleaf sleaf cnode snode srec

in node (mon cnode snode v b)

(mon crec srec tl b)

(mon crec srec tr b))

This combinator takes five arguments:

(1) cleaf is a contract for leaf nodes (which is generally uninteresting, because leaves are unit values

in this representation);

(2) sleaf is the strategy describing how to enforce cleaf;

(3) cnode is a contract for internal tree values;

(4) snode is the strategy describing how to enforce cnode;

(5) and srec is the strategy describing how to recursively enforce the resultant tree contract on

each node’s sub-trees.

To demonstrate its usage, we may use this combinator to define a contract to verify each element

in a given tree is nat/c:

any/c := pred/c (λ x. true) (45)

nat-tree/ceager := tree/c any/c eager nat/c eager eager (46)

The resultant contract works as follows:

• Each (nullary) leaf value is essentially ignored via any/c, the contract that always holds.

• At each internal node, we eagerly verify the node’s value is a natural number and, further,

eagerly traverse the left and right subtrees.

Using this tree/c combinator, we can also define a generalized version of this contract that takes two

strategy arguments representing the enforcement strategies for each interim value and the recursive
81

strategy (respectively):

nat-tree/cs := λ s1 s2. tree/c any/c s1 nat/c s1 s2 (47)

We can redefine nat-tree/ceager in terms of this combinator as:

nat-tree/ceager := nat-tree/cs eager eager (48)

Unfortunately, we cannot define bst/c in terms of tree/c: in order to ensure that a tree is a bina-
ry-search tree, we must check that each value in the left sub-tree is less than (or equal to) its parent
node’s value and, similarly, each value in the right sub-tree is greater (or equal to) than its parent
node’s value. This value flow requires a dependent tree contract, similar to dependent contracts,
wherein each sub-contract receives the current node’s value as an input before assertion. We can
define such a combinator as:

tree/dc := λ cleaf sleaf cnode snode cleft cright srec. (49)

λ tree b.

casetree (tree;

leaf ▷mon cleaf sleaf leaf b;
node v tl tr ▷node (mon cnode snode v b)

(mon (cleft v) srec tl b)

(mon (cright v) srec tr b))

This combinator takes seven arguments6

(1) cleaf is a contract for leaf nodes ;

(2) sleaf is the strategy describing how to enforce cleaf;

(3) cnode is a contract for internal tree values;

(4) snode is the strategy describing how to enforce cnode;

(5) cleft and cright are two procedures that expect a node value as input and yield the appropriate

contracts for the left and right sub-trees (respectively);

(6) and srec is the strategy describing how to recursively enforce the resultant contract on the left

and right sub-trees.

6Other variants of this contract include one that uses a single strategy at every contract, and one that uses the same
strategy for the node’s value and sub-trees. These alternatives, however, trade expressiveness for programmatic ease.

82

We can use this dependent contract combinator to define bst/c directly7:

bst/c := λ s. µ bst/c s lo hi. (50)

tree/dc any/c eager
(pred/c (λ x. (lo ≤ x)and(x ≤ hi))) eager
(λ v. bst/c s lo v) (λ v. bst/c s v hi) s

This contract verifies that each internal value in the tree is within the correct numeric bounds,

propagating the node values downward. As bst/c eager, this contract must traverse the entire

tree to enforce this constraint, requiring O(n) time (whereas an insertion algorithm would require

O(logn) time in a sorted tree). We can weaken this guarantee, however, and use bst/c semi to

enforce the invariant on exactly the nodes we visit during the program, recovering O(logn) com-

plexity for insertion. Furthermore, we can completely decouple the evaluation via bst/c promise,

starting the entire assertion in concurrent processes and only synchronizing with (and waiting on)

those nodes required by the program; perform best-effort verification with bst/c concurrent; use

fconc for finally-concurrent, start-and-forget verification; and check bst/c eager under promise as

“mon (bst/c promise) eager tree B”, constructing a promise that will concurrently enforce the

entire contract. Each of these variations follows from the same definition of bst/c.

Even further, we may define a secondary version of bst/c that takes an additional value-enforcement
parameter, allowing us to control exactly when to verify each node value in addition to the general
recursive verification scheme:

bst/cs := λ s1 s2. µ bst/c s lo hi. (51)

tree/dc any/c eager
(pred/c (λ x. (lo ≤ x)and(x ≤ hi))) s2

(λ v. bst/c s1 lo v) (λ v. bst/c s1 v hi)s1

5.8.3. A Lazy Tree Fullness Contract.

Our final example tackles the problem of lazily ensuring that a binary tree is full (that is, each node’s

sub-trees have the same height). Findler et al. [37] identify such checks as particularly difficult in

the context of verification, as verifying this property for a given node require the verifier to fully

inspect the node’s children. This style of upward value propagation is presented in Figure 5.11, and

this value flow will not allow lazy structural contracts to incrementally verify this property.
7We could also ensure the tree’s values are natural numbers by adding that requirement to the value contract
conjunction.

83

?◦?

?◦? ?◦?

?◦??◦?

(a)

1◦?

0◦0 ?◦?

?◦??◦?

(b)

1◦?

0◦0 1◦?

?◦?0◦0

(c)

1
⊗2

0◦0 1◦1

0◦00◦0

(d)

Figure 5.11. Evolution of contract checking during tree traversal for a full binary tree using
asynchronous callbacks.

To further explain this problem, consider using the predicate full? to define a predicate contract:

full? := let f = µ full tree .

casetree (tree;

leaf ▷0;
node v tl tr ▷let hl = full tl

hr = full tr
in if (hr = hl)and(hl ≥ 0)and(hr ≥ 0)

then 1 + hl

else -1
in λ t. 0 ≤ (f t)

(52)

full/c := pred/c full? (53)

In general, we must traverse an entire tree to know if it is full: each node must first inspect its

children, using the recursive results to determine if it is full before propagating this information

upward to ensure the property for the entire structure. This style of value propagation through

monitored structures generally inhibits semi-eager enforcement: if we enforce full/c using semi on

a tree t, the monitor will traverse the entire tree when forced.

In λπ
cs, however, we have an alternative solution: we can create custom value flows for contracts,

allowing us to use a series of interacting processes that communicate via secondary communication

channels to verify this property. To construct this mechanism, we use the concurrent strategy,

creating processes that serve as “callbacks” to propagate the information upward.
84

While complex in concept, the only additional facility we require is a choice-based reading operation

in order to communicate with multiple subcontracts at once. This choice operator is a straightfor-

ward addition to λπ
cs: we extend the “matches” relation from Figure 4.2 to support choice as:

e1
ι
⌢
⌣ e2 with (e′1, e

′
2)

e1
ι
⌢
⌣ choice e2 e3 with (e′1, e

′
2)

e1
ι
⌢
⌣ e3 with (e′1, e

′
3)

e1
ι
⌢
⌣ choice e2 e3 with (e′1, e

′
3)

The [Synchronize] operation in Figure 4.2, in conjunction with this extended definition, allows

us to perform choice-based communication via choice, i.e., to retrieve a result from one of two

channels:

{⟨choice ι1 ι2⟩π0 , ⟨write ι1 1⟩π1 , ⟨write ι2 2⟩π2}

⇒{⟨1⟩π0 , ⟨unit⟩π1 , ⟨write ι2 2⟩π2}

or {⟨2⟩π0 , ⟨write ι1 1⟩π1 , ⟨unit⟩π2}

With this choice operator in place, we may now express a lazy fullness contract using “callback”-style

communication:

full/fc := µ full i . (54)

let il = chan
ir = chan

in tree/dc (pred/c (λ _. seq (write i 0) true)) eager
(pred/c (λ _. let h1 = choice (read il) (read ir)

h2 = choice (read il) (read ir)

in if h1 = h2

then (seq (write i (1 + h1)) true)
else false))

concurrent
(λ _. full il)
(λ _. full ir)
semi))

We parameterize each contract invocation by a communication channel i, indicating where to write

the current nodes height. At leaf nodes, the contract writes 0 to i and succeeds. At internal

nodes, we pass two fresh channels, il and ir to the left and right sub-trees respectively. Next we

assert (full il) and (full ir) on the appropriate sub-trees, utilizing the dependent contract to delay

these invocations until usage time (to prevent divergence). We verify each of these subcontracts

with semi postponing verification verified until the initiating process demands them. Finally, the

concurrent-verified node value contract retrieves its sub-tree heights across il and ir. If these two
85

heights are equal, the contract writes the appropriate height across i and succeeds (triggering its

parent’s fullness test); if not, the contract signals a violation.

This communication pattern allows each contract to propagate values via side-channel communi-

cation, working together to lazily establish global properties about programs. Such a contract is

only possible after fully separating of the monitor evaluator from the user evaluator and expos-

ing communication tools to contract writers that facilitate contract verification via custom-crafted

traversal of monitored structures.

Effectful Tree Fullness. Unsurprisingly, this is not the only solution to lazily ensuring tree full-

ness. Utilizing effectful contracts, we can imagine a dependent contract that keeps track of its

recursion depth and, in each leaf node, reports this depth to a secondary process, which will raise a

contract violation if it ever receives two disagreeing depths (indicating the tree is not full). This style

of effectful contract verification allows programmers to verify global properties with less overhead,

and, as we will see in Chapter 6, it may be directly encoded as a contract verification meta-strat-

egy, modifying the underlying strategy’s behavior to provide this additional runtime verification

mechanism.

86

C H A P T E R 6

Beyond Contracts: Verification Meta-strategies

synopsis
Strategies, on their own, do not form a complete calculus; they are, in a sense, the basic

“values” of a rich strategy calculus that describes the nature of runtime verification. To

further illustrate this idea, we now introduce operators of this calculus in the form of

meta-strategies, which are strategy-level operators that take one or more strategies (plus

additional arguments) as input and produce new verification behaviors. In this chapter,

we define a number of such meta-strategies, including with, comm, random, memo, and

transition (§6.1-6.4); sketch additional points in this meta-strategy design space (§6.5);

and, finally, demonstrate how these meta-strategies pave the way for reasoning about

contract interactions with other effects (§6.6).

Contract verification strategies each describe how to monitor contracts in terms of how and when

they interact with the user evaluator. In this chapter, we introduce and explore the notion of

meta-strategies, or strategy-modifying strategies, that augment this contract verification behavior

to extend λπ
cs to general runtime verification techniques (including, e.g., spot-checking and state-

machine verification).

At their core, meta-strategies take and produce new strategies, supplementing or altering the

sub-strategy behavior. For example, the with meta-strategy takes an effectful procedure as an

argument and applies this procedure to the monitored value before returning the monitored value

to the initiating process. Combining this meta-strategy and the effectful println operation, we can

write a function contract that verifies the function’s input is a natural number and prints that

input to the console:

addWithPrint
∆
= mon eager (fun/c (with println eager) nat/c eager nat/c) (λ x. x + 10) B

{⟨addWithPrint 10⟩π} ⇒∗ {⟨20⟩π, · · · } console: 10

87

The with meta-strategy also serves as a key component in general runtime instrumentation. For

example, we can use it to store each of a procedure’s inputs in a list by using with and an operator

that adds its argument to a reference cell1:

let args = ref emptyList
logger = λ x. args := (cons x (!args))
log/c = fun/c (with logger eager) nat/c eager nat/c
incrWithLog = mon eager log/c (λ x. x + 1) B

in seq incrWithLog 10

incrWithLog 5

incrWithLog 0

!args
⇒∗ [0, 5, 10]

In this example, we define logger, which adds its argument to the list in the args reference cell,

and provide this logger as the secondary procedure to with in the pre-condition strategy for log/c.

As the program proceeds, each invocation of incrWithLog stores the function argument in args,

resulting in the collective list of arguments as output.

In the rest of this chapter, we will introduce a number of additional verification meta-strategies

and use them to develop additional, generalized runtime inspection and verification tools.

6.1. The With Meta-strategy—Performing Additional Operations

We now begin our formal definitions of meta-strategies by defining with, which takes a sub-strategy

and a procedure and, similar to a dependent contract [36], applies the procedure to the contracted

result. Unlike a dependent contract, however, the meta-strategy applies the function and discards

the result (instead of using the result as a new contact). Enforcement under the with meta-strategy

proceeds as:

(MW1) the meta-strategy checks its contract using the sub-strategy s;

(MW2) passes the contracted result as an argument to the provided procedure f , discarding the

application’s result;

(MW3) and, finally, returns the contracted result to the user process.

1Throughout this chapter, we use additional, minor extensions to λπ
cs, including references, which we create with

ref initialValue, dereference with !reference, and update with reference := newValue; and lists, wherein we create
new, empty lists with emptyList, add elements to the front as cons newV alue list, and print as [elem1, elem2, · · ·].
These operators follow the usual semantics as presented by Pierce [73].

88

We implement this meta-strategy behavior in λπ
cs as2:

Definition 6.1 (The with meta-strategy).

mon (with f s) con exp B → let x = mon s con exp B

in seq (f (mon s con exp (indy B)))

x

Our blame in this definition is similarly informed by indy-style blame [27] in dependent function

monitoring (§5.8.1): we use the indy operation to establish blame, ensuring any contract violation

that occurs while computing f blames the contract itself for over-exploring the value and causing

the violation. This is, in some sense, an over-simplification, however: Dimoulas et al. [27] define

indy verification to introduce contracts themselves as separate, accountable parties in blame tuples,

and it is conceivable that we should extend this approach to account for each meta-strategy as a

separate blame entity. This extension is, however, straight-forward following the ownership model

presented by Dimoulas et al. [27], and so we leave it as future work.

In addition to our previous use-cases, this meta-strategy provides immense utility for combining

contracts with additional runtime verification and inspection. To illustrate this utility, consider

the following example, wherein we use with to implement general function time profiling as follows

(using curTime to get the current system time):

tagTimer ∆
= λ timeRef. λ tag. timeRef := cons ([tag, curTime]) (!timeRef)

slowFact ∆
= µ slowFact n.

if n = 0 then 1 else seq (sleep 10) (n ∗ (slowFact (n − 1)))

let timerRef = ref emptyList
timer = tagTimer timerRef
sfTimed = mon eager

(fun/c (with (λ x. timer “pre") eager) nat/c
(with (λ x. timer “post") eager) nat/c)

slowFact
in seq sfTimed 10

!timerRef

⇒∗ [[“post", 1493529262817], [“pre", 1493529262254]]

2It is conceivable that we should use additional processes for implementation meta-strategies in order to follow our
previous patterns-of-communication approach. It is, in this context, straight-forward to abstract meta-strategies into
their own processes, and so we eschew the abstraction to clarify presentation.

89

This example uses with to instrument each pre-condition and post-condition to store a tagged

timestamp in the timerRef global reference, allowing the programmer to track how much time their

program spends in that particular procedure (including procedures it calls). At the end of the

program, we can get an entire list of these calls and, e.g., use this information to compute the

average function runtime or its runtime as a percentage of the whole program.

This style of strategy and meta-strategy dispatch gives programmers an extensible, uniform inter-

face to inspect and verify general runtime performance of programs. Furthermore, this interface

allows programmers to perform this instrumentation in tandem with contract verification: in the

above example, contracts on slowFact ensure that each input and output is a natural number in

addition to recording timing information.

6.1.1. The Communication Meta-strategy—Communicating Contract Results

Our next meta-strategy is comm, a special-case variation of the with meta-strategy that provides

inter-process communication with the goal of simplifying the implementation of side-channel con-

tracts [80]. The idea is to communicate the result of the with procedure across some communication

channel ι, allowing programmers to preserve the result of the meta-strategy computation and con-

tinue with the original program. This “communication” meta-strategy takes a procedure f and a

communication channel ι as input and, when used, provides the monitored term to the procedure

f and write the computation’s result across channel ι before returning the contracted value.

Similar to the with meta-strategy, comm enforcement proceeds as:

(MC1) the meta-strategy checks its contract using the sub-strategy s;

(MC2) passes contracted result as an argument to the provided procedure f ;

(MC3) writes the application’s result across ι;

(MC3) and, finally, returns the contracted result to the user process.

We implement this meta-strategy in λπ
cs as:

Definition 6.2 (The comm meta-strategy).

mon (comm f ι s) con exp B → let x = mon s con exp B

in seq (write ι (f (mon s con exp (indy B))))

x

90

We may now use comm to simplify our implementation of full/fc from Chapter 5, replacing the

ad-hoc communication in the leaf case with comm:

full/fc := µfull i . (55)

let il = chan
ir = chan

in tree/dc any/c (comm (λ _. 0) i eager)
(pred/c (λ _. let h1 = choice (read il) (read ir)

h1 = choice (read il) (read ir)

in if h1 = h2

then (seq (write i (1 + h1)) true)
else false))

concurrent
(λ _. full il)
(λ _. full ir)
semi))

Observe, however, that we cannot use this meta-strategy in the node value case for two reasons:

• First, the communication meta-strategy will block indefinitely until a process reads from ι,

an unfortunate, but not surprising, result of write’s blocking nature in λπ
cs. If, however, we

were to introduce some form of non-blocking write (or simply spawn the “write ι f val”

expression in a new process), we could implement some revised comm-nb meta-strategy with

this non-blocking form and use it to perform concurrent side-channel communication.

• The node-value contract relies on the communication result, and decoupling this value flow

would require further communication structures.

Even so, the comm meta-strategy has secondary utility: this style of meta-strategy also allows

us to interact with effects modeled as sessions, including state and logging effects implemented as

separate processes that provides the effects. Orchard and Yoshida [70] explore the relation between

session-based processes and effects, demonstrating how processes may be used to replicate effectful

behavior. In Section 6.6, we adopt this approach to implement a refined fullness contract, tracking

the depth of each leaf node and ensuring they match (a sufficient condition for tree fullness). This

close interaction between contracts and other suggests that we may also quantify contracts in such

a framework, but this remains as future work.
91

6.2. The Random Meta-strategy—Probabilistic Contract Enforcement

Our next meta-strategy, random, explores the idea of random enforcement. Ergün et al. [33] and

Dimoulas et al. [29] each describe notions of random testing for program correctness, wherein we

may forgo contract verification at each assertion site (e.g., only occasionally ensuring that a function

behaves correctly). In our meta-strategy implementation, we take some “checking rate” and verify

the given contract at that rate, skipping other verification sites. To provide this behavior, the

random meta-strategy proceeds as:

(MR1) the meta-strategy generates a random floating-point number n between 0 and 1;

(MR2) if n is less than the checking rate, performs contract verification, returning the result;

(MW3) otherwise, the monitor yields original expression to the initiating evaluator.

We implement this meta-strategy in λπ
cs as follows, where the random operator returns a random

value between 0 and 1:

Definition 6.3 (The random meta-strategy).

mon (random rate s) con exp B → if rate > (random)

then mon s con exp B

else exp

This meta-strategy provides an alternative mechanism for decreasing contract verification overhead

in favor of a spot-checking verification, eschewing some number of checks to recover performance

while providing a margin of verification. For example, consider a binary-search tree insertion oper-

ator bstInsert, which takes a value and tree and inserts the value into the tree using a binary-search

tree insertion algorithm. In Chapter 5, we discussed semi as a mechanism to recover asymptotic

behavior by delaying each check. Using random, we can introduce another alternative to eliminate

some overhead by probabilistically verifying bst/c on bstInsert one-tenth of the time:

bstInsertr ∆
= mon eager

(fun/c (random 0.1 eager) (bst/c (random 0.1 eager))
(fun/c eager nat/c eager (bst/c eager)))

bstInsert

The contract’s pre-condition enforces each bst/c via “random 0.1 eager”, ensuring verification only

proceeds (eagerly) one-tenth of the time. This will notably reduce the contract overhead of insertion

while still spot-checking that bstInsert exhibits correct behavior over the course of the program.

Moreover, we may still mix and match strategies, allowing us to, for example, use fconc to randomly,
92

concurrently ensure the pre- and post-conditions:

bstInsertr ∆
= mon eager

(fun/c (random 0.1 fconc) (bst/c (random 0.1 fconc))
(fun/c eager nat/c (random 0.1 fconc) (bst/c (random 0.1 fconc))))

bstInsert

Using fconc as the sub-strategy and argument to bst/c, λπ
cs will probabilistically check each level

of the pre- and post-condition contracts in another process while the main program continues,

stripping away contract overhead in favor of spot-checked correctness.

6.3. The Memoization Meta-strategy—Caching Contract Results

In most modern contract systems, contract verification is pervasive to the point of impacting

program performance [17, 36, 37]. In this section, we introduce another alternative: when contracts

are idempotent (i.e., they will always return the same result for a given input), we may cache these

results, avoiding reverification in the future.

To implement this meta-strategy, we follow the standard approach to memoization in dynamic

programming solutions [19], establishing a hash map that contains contract-value pairs as keys and

verification results as values3. To this end, we will need the following operations:

• contains? check if a map contains a key, returning true or false accordingly;

• lookup returns the entry’s value in a map;

• and update-map adds a new entry and value to a map.

Using these operations, the memo meta-strategy:

(MM1) looks up the contract/expression pair in the provided map

(MR2) if the map contains the pair, it returns the result and dispatches appropriately;

(MW3) otherwise, it proceeds with contract evaluation, modifying the contract to store the

enforcement result in the memoization map.

The contract modification (MW3) is a subtle requirement: we cannot be sure the contract holds until

the underlying verification proceeds, and less-eager structures (such as semi) need a mechanism to

update the map after performing verification.

3We actually only need to retain the contract-value pairs, as negative results signal errors. We use a hash-map
interface for uniformity with other memoization approaches.

93

We implement this meta-strategy as:

Definition 6.4 (The memo meta-strategy).

mon (memo map s) con exp B →
if contains? map (con, exp)

then if lookup map (con, exp)

then exp

else raise B

else let con′ = λ x b. case (catch inl (inr (con x b)));

y ▷ seq (update-map map (con, exp) false) (raise y);

z ▷ seq (update-map map (con, exp) true) z)
in mon s con′ exp B

As stated above, we use contract-expression pairs (as (con, exp)) with the associated memoization

map. In addition, we introduce the revised contract definition as con′: when the contract result is

not part of the map, we wrap the underlying contract check in a variation of the conres handler

that stores the verification result before reporting the result to the program (by either returning

the value or re-raising the violation, as necessary).

As with random, memo is particularly effective for reducing performance overhead for contracted

functions. For example, the following code will check each input and output to fibonacci exactly

once, memoizing the results4:

fibm
∆
= let map = emptyMap

fibCon = fun/c (memo map eager) nat/c (memo map eager) nat/c
in mon eager fibCon fibonacci B

Repeated invocations of fibm will store the pre- and post-condition verification results, trading

contract verification overhead for storage space.

6.4. The Transition Meta-Strategy—Ensuring State Machines with Verification

Our final verification meta-strategy deals with verifying state-based program behavior, similar to

the protocols described by Dimoulas et al. [30], wherein a series of contracts collaborate to ensure

a program is proceeding according to some state machine. The idea is that, instead of tracking or

maintaining an individual state, we can use collaborative contracts to model a program’s correct

behavior as a series of state transitions, ensuring the program performs a specific set of operations

4We use the subscript m to indicate a monitored variation.

94

in a specific order, e.g., verifying that a program does not request an iterator’s next value without

first checking it has one [54].

To specify these transition rules, we introduce a pair of meta-strategies:

• The transition meta-strategy takes the strategy state (i.e., a memory reference to the current

state), a “from” state indicating the transition source, a “to-state” list of transition targets

(allowing us to model non-deterministic state transition machines), and a sub-strategy to

enforce the underlying contract:

transition state from [to-state] subStrat

We model “to-state” as a list in order to support non-deterministic machines, where the list

represents each of the valid next states. In addition, we assume that the current state value is

stored as such a list, classifying a valid transition as any transition whose “from” argument is an

element of this list. If the state list does not include this “from” argument, the meta-strategy

signals an error.

• The transition-as meta-strategy takes the strategy state and a procedure transition-f param-

eterized by the current strategy state, the contracted value, and blame information:

transition-as state op strat

If the transition function raises an error, the meta-strategy signals an error; otherwise, we

update the state with the function result and return the verification result to the user program.

Similar to dependent contracts, this meta-strategy allows the transition function to examine

the contract input, parameterizing its transition by the values currently flowing through the

program.

We define these two strategies as follows, using elem? to check if an individual element is in a list

to ensure correct transitions, raising errors when appropriate:

Definition 6.5 (The state-transition transition and transition-as meta-strategies).

mon (transition state from toList strat) con exp b → if elem? (!state) from
then seq state := toList

mon strat con exp b
else raise b

95

unknownstart

some

error

none

next s

hasNext s = true

hasNext s = false

hasNext s

next s

hasNext s = false

next s

hasNext s = true

Figure 6.1. A state machine ensuring a program checks an iterator has another element
before attempting to retrieve it.

mon (transition-as state op strat) con exp b → let rinput = mon strat con exp (indy b)
in seq state := catch (λ b′. raise b′)

(op (!state) rinput b)
mon strat con exp b

In transition-as, we once again use indy-style blame to ensure that the contract, and not the user

program, is correctly blamed for the error in the transition function.

We also provide makeContractState to create a contract state:

makeContractState ∆
= λ startState. ref [startState]

We can now use this transition-style meta-strategy to ensure that, for example, a program uses a

list iterator correctly, always calling hasNext on the iterator (and receiving true) before invoking

next to retrieve the next iterator value. (We provide the state machine describing this property in

Figure 6.1.)

In order to model this behavior in λπ
cs using our transition-based meta-strategies, we treat state

machine errors as contract errors and write monitors that model and enforce this behavior for
96

hasNext and next, implementing the next/c and hasNext/c contracts as:

iterState ∆
= makeContractState “unknown"

hasNextTrans ∆
= λ curState conRes b. if (force conRes) then [“some"] else [“none"]

hasNext/c ∆
= fun/c eager iter/c (transition-as iterState hasNextTrans eager) any/c

next/c ∆
= fun/c eager iter/c (transition iterState “some" [“unknown"] eager) any/c

In this encoding, we use strings to represent each state5 as follows:

• For hasNext, the state transition depends on the procedure’s result, and thus we must use

transition-as with the user-defined hasNextTrans to determine the correct transition state

(i.e., “some" if hasNext returns true and “none" if hasNext returns false).

• We model next’s behavior using transition, where the only valid transition is from “some" to

“unknown"; using next on an iterator in any other state will produce a runtime violation in

accordance with our implementation of transition.

Using these definitions, we can now define nextm and hasNextm, monitored variants of next and

hasNext that use these contracts:

nextm
∆
= mon eager next/c next B

hasNextm
∆
= mon eager hasNext/c hasNext B

These monitored procedures ensure each iterator uses hasNextm before nextm:

let iter = toIterator [1]
in if (hasNextm iter) then (nextm iter) else unit
⇒∗ 1

let iter = toIterator [1]
in nextm iter

⇒∗ raise B

In the first example, the program terminates as expected. In the second, however, the program

invokes nextm on the iterator before invoking hasNextm, an invalid state transition, and the transi-

tion-enforcement mechanism raises an error.

5Recall that any/c is the permissive contract that allows for any result.

97

6.5. Additional Contract Meta-strategies

As with verification strategies, this collection of meta-strategies is only an initial exposure of the

design space, intended as a starting point for further design and discussion. In this section, we

introduce three additional meta-strategies, sketching their encodings in the λπ
cs framework.

6.5.1. Two-Way Communication.

Our comm strategy provides one-way communication with a process, but advanced verification

structures frequently require two-way interaction. We can provide this two-way operation as a

meta-strategy with call/return style communication. This comm/ret meta-strategy proceeds as

comm, taking a procedure and a channel, writing the procedure’s result across the channel. In

addition, the comm/ret strategy reads a verification flag from the channel, allowing the process to

signal a verification error to the monitoring form. We define this strategy as:

Definition 6.6 (The comm/ret meta-strategy).

mon (comm/ret f i s) con exp B → let x = mon s con exp B

in
seq(write ι (f (mon s con exp (indy B))))

if (read ι) then unit else raise B

x

As we will see in the Section 6.6, this strategy allows us to use communication with a secondary

process to verify global program properties, e.g., ensuring that a tree is full by using our secondary

process to track the depth of leaf node, signaling an error if any two nodes occur at different depths.

6.5.2. Optional Verification.

Dimoulas et al. [29] define option contracts, wherein modules may optionally “exercise” (verify)

or “waive” (discard) contract verification, avoiding unnecessary contract verification to recover

performance. It is possible to replicate this type behavior in λπ
cs as a sort of option meta-strategy,

utilizing our delaying structures in λπ
cs to encode contracts via a procedure that, when forced,

accepts “exercise" and “waive" as inputs, performing the appropriate operation in each case:

98

Definition 6.7 (The option meta-strategy).

mon (option strat) con exp B → delay (λ op. if op == “exercise"
then mon con strat exp b

else if op == “waive"
then exp

else raise B)

We may additionally define exercise and waive to force the value and provide the appropriate input,

allowing us to exercise or waive any option-verified contracts.

exercise := λ x. (force x) “exercise"

waive := λ x. (force x) “waive"

While this meta-strategy replicates the basic style of option contracts, their original presentation

also provides a blame characterization in which waived contracts may blame the waiving party if a

violation is later discovered. Our calculus does not support the rich blame encoding infrastructure

used by Dimoulas et al. [29], however, and incorporating this style of blame-carrying calculus with

λπ
cs remains a future work.

6.5.3. Security Enforcement Contracts.

Moore et al. [68] introduce contracts to model authorization and access control, which provide a

domain-specific language for writing security-centric contracts, ensuring specific procedures cannot

call specific operations (e.g., reading a file’s contents). To recreate this behavior, we can introduce a

security meta-strategy that supports the custom syntactic forms described by Moore et al. [68]. This

system will also require us to further modify λπ
cs to support the dynamically-bound parameter scope

system this contract model requires, which we speculate we may encode via process interactions in

our λπ
cs framework. Such an encoding remains as future work in the meta-strategy design space.

6.6. Contracts as Generalized Runtime Effects

As discussed earlier in this chapter, Orchard and Yoshida [70] explore the dual nature of algebraic

effects and session-style processes, demonstrating that we may directly encode algebraic effects in

terms of processes. This encoding relies on the notion that algebraic effects may be modeled as

separate, interacting processes, e.g., a recursive process may serve as a “state” effect by accepting

get and put operations across a channel, responding appropriately and recurring on itself with the
99

current state. In the context of λπ
cs, a contract communicating with such an “effect” can utilize

these operations to interact with the effect for verification purposes, allowing us to encode any

general runtime verification effect expressible as an algebraic effect and/or session as part of the

λπ
cs semantic framework.

To illustrate the utility of this approach, we spend the rest of this section developing the effect-based

tree fullness contract previously described in Chapter 5, using the comm/ret meta-strategy and a

secondary, state management process to develop an effect-based semi-eager tree fullness contract.

The tree contract will keep track of the current tree depth, reporting it to the state effect process

at each leaf node, and the state effect process will ensure that each leaf node occurs at the same

depth (ensuring the tree is full), recurring with the depth value.

We begin with defining the state effect process as a procedure that takes a communication channel i.

This procedure uses a recursive fixpoint to maintain its state as an argument between invocations,

initializing it with -1 and modifying it based on its interactions (e.g., tracking the depth of the

tree’s leaf nodes):

stateProc ∆
= λ i.

let s = µ stateProc state.

let action = read i

in if (fst action == “end")
then unit
else if ((fst action) == “depth") and state < 0

then seq write i true
stateProc (snd action)

else if (fst action) == “depth"
then if (snd action) == state

then seq write i true
stateProc (snd action)

else seq write i false
stateProc (snd action)

else stateProc state

in s -1

We structure this state effect as a session-style recursive procedure, where each loop of the process

reads an action across the communication channel i and then performs the appropriate behavior:

• If the i input is a pair whose first element is “end", the manager terminates with unit.
100

• If the i input is a pair whose first element is “depth", we compare the second element of the

pair with the recursive state:

– If the recursive state is less than zero, indicating the state has not seen a correct depth

yet, we write true across i (indicating the contract holds) and recur with the second

element.

– If the two states match (indicating the leaf nodes are at the same depth, and thus this

part of the tree is also full), we write true across i (indicating the contract holds) and

recur with the depth value.

– If the state does not match the new input, we write false across i (indicating that

comm/ret should signal a contract violation) and recur with the depth value.

• If the message does not match one of the two forms above, we discard it, recurring appropri-

ately.

Using this definition, we can now write a fullness contract that interacts with this state effect

process to semi-eagerly verify tree fullness, using comm/ret at the leaf nodes to report the depth

of each leaf node to the state effect:

full/pc := λ i. (56)

let full = µfull depth.
tree/dc any/c (comm/ret i (λ _. (“depth", d)) eager)

nat/c semi
(λ _. full (d + 1))

(λ _. full (d + 1))

semi
in full 0

We can verify this contract on a tree by allocating a channel, spawning our state process, and

proceeding with verification:

let i = chan
in seq (spawn (stateProc i B))

(mon (full/pc i) semi tree B)

As the program explores the contracted tree, each node will semi-eagerly propagate its depth

downward to its subcontracts, and each leaf node will report its depth to the state process. If any

two leaves occur at different depths, indicating the tree is not full, and the program explores both

leaves, the comm/ret form will receive false and raise an error at the exploration site.
101

While this state procedure resembles the timer implementation in §6.1, this approach illustrates a

more general result: our λπ
cs framework allows programmers to write effectful contracts that forgo

ad-hoc effect interactions in favor of these principled effect interaction mechanisms. Moreover, this

allows contracts to interact with any algebraic effect, subsuming the majority of programmatic

effects [10, 12, 56, 64, 70]. The multi- and meta-strategy approach in λπ
cs provides a generalized

interaction system between these types of effects and contract monitors.

102

C H A P T E R 7

Pisces: An Implementation with Advanced Examples

synopsis
Thus far, we have used λπ

cs to define a runtime verification framework with contract

primitives, introducing verification strategies and meta-strategies to provide myriad ver-

ification (and inspection) behaviors. Recall, however, our claim in Chapter 4 that the

λπ
cs features we used to build our verification framework are standard to many modern

languages. To realize this claim, we now introduce Pisces, an extensible verification

library for the Clojure programming language that follows our formal semantics. In this

chapter, we introduce basic Clojure syntax (§7.1), present Pisces incrementally as a se-

ries of Clojure definitions (§7.2), and use Pisces to recreate examples from our previous

chapters (§7.4).

In Chapter 4, we described the only four mechanisms required to encode our multi-strategy veri-

fication system in an existing language: error propagation (including raising and catching errors),

forcing and delaying expressions, processes with communication, and, finally, some mechanism to

delay arguments before evaluation.

In this chapter, we demonstrate this in the Clojure programming language [49], using its implemen-

tation of these features to define Pisces, an extensible runtime verification library that provides

many of the same facilities as our λπ
cs-based verification framework. First, however, we take a mo-

ment to introduce and discuss the Clojure language, explaining its basic syntactic forms, in order

to explain our Pisces implementation.

7.1. Basic Clojure Operations

Clojure is a higher-order, functional language in the Lisp family [49, 65] that natively targets the

Java Virtual Machine (JVM) [62]. Its syntax introduces minor syntactic variations on classic Lisp

expressions, but overall follows the standard structure of Lisp programs. This section provides
103

a brief overview of these syntactic operations, and we refer the interested reader to the Clojure

documentation for more details [49].

7.1.1. Basic Syntax

As with other Lisp dialects, Clojure’s basic unit of code is the function, which we may define as:
1 (de fn add1
2 [x]
3 (+ x 1))

In this example, we use the defn form to indicate we are creating a new function definition, providing

the name add1, a list of arguments (in this case, the single argument x), and the function body

“(+ x 1)” (which uses Clojure’s prefix-style syntax to increment the function’s input by 1).

Clojure also provides a let form, similar in behavior to our let form in λπ
cs, as:

1 > (l e t [x 1
2 y 2]
3 (+ x y))
4 => 3

In this example, x is bound to 1 and y is bound to 2, producing 3 as the final result of the let body

“(+ x y)”. Note that, unlike our own let form, Clojure does not symbolically delineate bindings in

its let binding form.

Beyond these basics, Clojure maintains many features of Lisp, including higher-order functions.

For example, we may define app−to−5, which applies its input argument (as a procedure) to 5:

1 (de fn app - to - 5
2 [f]
3 (f 5))
4
5 > (app - to - 5 add1)
6 => 6

In this example, we pass add1 to app−to−5, which then applies add1 to 5, yielding 6. In addition to

higher-order procedures, Clojure also supports anonymous functions via fn:

1 > (app - to - 5 (fn [x] (+ x 2)))
2 => 7

Here, we provide the function “(fn [x] (+ x 2))” to app−to−5, yielding 7 as the program result.

7.1.2. Advances Features of Clojure

In addition to the basic forms above, Clojure provides a number of operations we will use over the

course of developing Pisces, including defining and using record structures, raising errors, Clojure’s

104

delay and @ operators, and syntactic macros (to avoid over-evaluation). As we will see in the next

section, we may elide the need for error propagation and process creation to simplify our Pisces

implementation.

Records in Clojure. Clojure allows programmers to define record structures via defrecord . For

example, we can define a record that represents a point in 2D space:

1 (d e f r e c o r d Po in t [x y])

This definition introduces a new constructor Point. that creates a Point record with fields x and y1:

1 (de f p o i n t - a (Po in t . 2 5))

We can retrieve values from a record by affixing : to the name of its field, resulting in record

accessors:
1 > (: x p o i n t - a)
2 => 2
3
4 > (: y p o i n t - a)
5 => 5

Further, we can ask if a given value is an instance of a specific record as:
1 > (i n s t a n c e ? Po in t p o i n t - a)
2 t r u e
3
4 > (i n s t a n c e ? Po in t 25)
5 f a l s e

Finally, we observe that records in Clojure are modeled as Java classes in the JVM, which is relevant

to our discussion of errors below.

Errors in Clojure. Since Clojure is based on the JVM, which works with Exception objects, we

must create such objects to raise errors. Clojure provides this creation through its record-creation

syntax as:

1 (Excep t i on . " t e s t e r r o r ")

Here, " test error " is an error message to report to the user when raising the exception.

We may raise this exception (escaping the surrounding program context), via Clojure’s throw oper-

ation:

1 > (+ (+ 2 3) (throw (Excep t i on . " t e s t e r r o r ")))
2 => Excep t i on t e s t e r r o r <debug i n f o . . . >

1Observe that we use def instead of defn here to indicate to Clojure that we are defining a value (not a procedure
using its procedure syntax).

105

In this example, throwing our exception discards the outer addition context, reporting the exception

as the program result.

Delaying and Forcing Expressions. Similar to λπ
cs, Clojure allows us to delay expressions via a

delay operation, producing a delayed value:

1 > (d e l a y (+ 2 3))
2 => <d e l a y e d >

In this example, the sub-expression “(+ 2 3)” is stored, unevaluated, as a delayed value. Clojure

also provides a short-hand forcing operation @ for evaluating these delayed values:
1 > (l e t [x (d e l a y (+ 2 3))]
2 @x)
3 => 5

In this example, the @ affixed to the front of the expression acts as a forcing form, evaluating the

sub-expression and yielding 5 as a result.

Syntactic Macros. Clojure provides syntactic macros, allowing users to write language forms

for rewriting syntax. For example, we may use Clojure’s defmacro to write a syntactic form that

produces a new, unevaluated expression from its input:
1 (defmacro p l u s - t h r e e
2 [x y z]
3 ’(+ ~x (+ ~y ~z)))

In this definition, we use the quote operator “ ’” to indicate we are creating a new syntactic form

and the unquote operator “~” to embed the expressions bound to x, y, and z, yielding the final

term:
1 > (p l u s - t h r e e (∗ 2 3) 3 4)
2 -> (+ (∗ 2 3) (+ 3 4))
3 => 13

As we will see in the next section, this syntax-rewriting mechanism will ultimately allow us to

define a mon form that delays the monitored term’s evaluation in the appropriate way.

7.2. Implementing the Pisces Library

With a basic understanding of Clojure’s syntax, we now turn our attention to Pisces, introduc-

ing our implementation incrementally: first, we introduce record structures for creating blame,

strategies, and meta-strategies; next, we define our monitoring form (e.g., mon) in terms of these

structures; after that, we use these structures to define a series of contract combinators; and, fi-

nally, we define a number of strategies and meta-strategies to use with this core. This piecewise
106

implementation approach ensures Pisces is extensible, allowing programmers to define additional

verification strategies and contract combinators for their own use.

7.2.1. Core Pisces

We begin with defining the blame, strategy, and meta-strategy record structures and the mon

syntactic macro, allowing us to define the rest of the Pisces library in terms of these definitions.

Blame. Our blame structure follows our previous λπ
cs presentation (which, in turn, follows Dimoulas

et al. [27]), using a three-value Blame record to maintain a server (accounting for the monitored

value), a client (accounting for the program context), and the contract itself:

1 (d e f r e c o r d Blame [s e r v e r c l i e n t c o n t r a c t])

In addition to this record form, we define invert−blame and indy−blame to allow combinators to

correctly restructure blame information as necessary:
1 (de fn i n v e r t - blame
2 [blame]
3 (Blame . (: c l i e n t blame) (: s e r v e r blame) (: c o n t r a c t blame)))
4
5 (de fn i ndy - blame
6 [blame]
7 (Blame . (: c l i e n t blame) (: c o n t r a c t blame) (: c o n t r a c t blame)))

These definitions each create a new Blame. record, using the associated record accessors to rearrange

the blame information as appropriate. We also introduce blm as an initial blame value:

1 (de f blm (Blame . " s e r v e r " " c l i e n t " " c o n t r a c t "))

This value allows programmers to test blame locally without manually writing each individual field.

Automatically extracting blame information, such as in Racket [36], remains future work.

Strategy and Meta-Strategy Records. In Pisces, we model each strategy and meta-strategy

as an instance of a Strategy or Metastrat record, respectively. These records carry verification im-

plementations, ensuring verification behavior is implicitly strategy-defined (as part of each record’s

impl field) , allowing users to define their own verification strategies. We define these records as:

1 (d e f r e c o r d S t r a t e g y [sname imp l])
2
3 (d e f r e c o r d Meta s t r a t [sname imp l s u b s t r a t])

107

The Strategy record takes a strategy name and an associated implementation procedure that rep-

resents how to proceed with verification, and, similarly, the Mestrat takes a strategy name, imple-

mentation, and verification sub-strategy describing how underlying verification should proceed2.

We postpone defining individual verification strategies until the next section, first focusing on how

mon will use these individual strategies in order to guide our implementation.

Defining Monitors. We define the mon language form in terms of two sub-procedures, mon-flat and

mon-meta, which retrieve and invoke the : impl field from strategies and meta-strategies, respectively.

Our mon-flat proceeds as follows:
1 (de fn mon - f l a t
2 [c o n t r a c t s t r a t dterm blame]
3 (cond
4 (i n s t a n c e ? S t r a t e g y s t r a t)
5 ((: imp l s t r a t) c o n t r a c t dterm blame)
6 : e l s e (throw (Excep t i on . (s t r " I n v a l i d s t r a t e g y : " s t r a t "\n")))))

In this implementation, mon-flat expects a contract to verify, a strategy strat , monitored value

dterm (which, as we will see below, is delayed as part of mon to avoid over-evaluation), and blame

information. The implementation proceeds by ensuring strat is a strategy before retrieving the

implementation (via : impl), and applying it to the other inputs3.

Our mon-meta procedure follows this definition, accepting the same series of arguments and dis-

patching based on the input strategy4:
1 (de fn mon - meta
2 [c o n t r a c t s t r a t dterm blame]
3 (cond
4 (i n s t a n c e ? Meta s t r a t s t r a t)
5 ((: imp l s t r a t) c o n t r a c t (: s u b s t r a t s t r a t) dterm blame)
6 (i n s t a n c e ? S t r a t e g y s t r a t)
7 (mon - f l a t c o n t r a c t s t r a t dterm blame)
8 : e l s e (Excep t i on . (s t r " I n v a l i d s t r a t e g y : " s t r a t "\n"))))

In the case that strat is a Metastrat, we retrieve the implementation and apply it to the contract,

monitored term, verification sub-strategy (which we retrieve with “(: substrat strat)”), and blame

information. If strat is a Strategy, however, we dispatch to mon-flat to handle it. This definition

allows us to use mon-meta as the single entry point for verification, thus defining mon as a macro

that rewrites to an invocation of mon-meta as:

2It’s possible that meta-strategies should manage substrategies as part of their own implementation, but we leave
this possibility as future work.
3If the strat argument is not a Strategy, we throw the appropriate exception.
4We use Clojure’s cond operator, which takes a series of tests and associated clauses, evaluating the first clause whose
associated test returns true.

108

1 (defmacro mon
2 " Check a c o n t r a c t w i th a s p e c i f i c s t r a t e g y "
3 [c o n t r a c t s t r a t exp r blame]
4 ‘ (mon - meta ~ c o n t r a c t ~ s t r a t (d e l a y ~ exp r) ~blame))

In order to ensure contracted expressions are not immediately evaluated, we use Clojure’s defmacro

to wrap expr in a delay form before passing it into mon-meta. This delayed structure may then be

forced by each strategy if and when it becomes necessary, allowing individual verification strategies

to avoid over-evaluation.

Finally, we define an extract operator, analogous to force in λπ
cs, to force delayed expressions (and,

as we will see later, computational futures):

1 (de fn e x t r a c t
2 [exp]
3 (i f (o r (d e l a y ? exp) (f u t u r e ? exp)) @exp exp))

Our extract operation checks if the input is a delayed term or computation future, forcing either

and returning the expression in any other case. This allows us to blindly extract any value without

Clojure producing an error due to the misapplication of its @ operator.

7.2.2. Contract Combinators

With our core definitions in place, we now turn our attention to defining predc, pairc , and func in

terms of mon and the blame definitions in the previous section, introducing each as a “user-level”

procedure on top of this core system. As with λπ
cs, we encode contracts as functions that take a

monitored value and blame information as input and perform their own verification, maintaining

our contract-agnostic verification approach in Pisces.

Predicate Contracts. We start with predc, a predicate contract combinator, taking a predicate

as input and returning a verification procedure that will return the input or raise an error (based

on the verification result):

1 (de fn predc
2 [f]
3 (fn [x blame]
4 (i f (f x)
5 x
6 (throw (Excep t i on .
7 (s t r " Cont rac t v i o l a t i o n : " x
8 " v i o l a t e d " f "\n" " Blame : " blame))))))

This definition follows our previous pred/c definition, using Clojure’s throw operator to raise the

appropriate error when the predicate does not hold.

109

As expected, we may now use this definition to recreate our previous contracts in Clojure, e.g. anyc

and natc:
1 (de f anyc (p redc (fn [x] t r u e)))
2
3 (de f natc (p redc (fn [x] (>= x 0))))

To define anyc, we invoke predc on “(fn [x] true)”, a predicate will returns true for any input, and,

similarly, we define natc with a predicate that verifies its input is greater than or equal to zero. We

will use these predicates in the next section to demonstrate that our verification strategy definitions

proceed correctly.

Pair Contracts. Similar to predc, our definition of pairc follows our pair/c definition in Chapter 5,

where we use Clojure’s list-creation syntax [fst snd] to create a two-element list of monitored

results:
1 (de fn p a i r c
2 [c1 c2 s]
3 (fn [p a i r blame]
4 [(mon c1 s (f i r s t p a i r) blame)
5 (mon c2 s (second p a i r) blame)]))

In this presentation, we opt for a single strategy parameter to pairc , deviating from pair/c by

accepting and using the same strategy argument s for both subcontract verifications.

Using this combinator, we can now define natpairc , a strategy-parameterized contract that verifies

each element in a pair is a natural number:
1 (de fn n a t p a i r c
2 [s t r a t]
3 (p a i r c natc natc s t r a t))

Function Contracts. Finally, we define func, a variant of fun/c from Chapter 5. Unlike our previous

definition, this implementation deals with a variable number of arguments, allowing the user to write

contracts for functions with multiple inputs. For example, using func, we may write a contract for a

binary-search tree insertion procedure that takes a tree and insertion value as inputs, semi-eagerly

verifying the input tree is a binary-search tree, eagerly verifying the input value is a natural number,

and, finally, eagerly verifying its result is a binary-search tree. We would hope to write such a

contract as:

1 (de f b s t - i n s e r t c - s e s
2 (func b s t c semi natc eage r b s t c eage r))

In order to handle this variable-arity input, we must pre-process the contract inputs, “raveling”

together the contract-strategy pairs and grouping them with the appropriate function argument at

each invocation. To this end, we begin with defining a specialized con−ravel procedure:

110

1 (de fn con - r a v e l
2 [a r g s i n s]
3 (i f (empty? i n s)
4 (l i s t)
5 (cons (concat (take 2 a r g s) (l i s t (f i r s t i n s)))
6 (con - r a v e l (drop 2 a r g s) (r e s t i n s)))))

This procedure takes a list of args, representing the contracts and their strategies, and a list of ins ,

representing the contracted procedure’s input. It then “ravels” these lists together by retrieving

the first two elements of args (a contract and its strategy) and combining it with the first element

of ins , proceeding recursively until there are no more procedure arguments (and raising a runtime

error if there are an insufficient number of contract-strategy pairs).

Using this definition, we build func as follows:
1 (de fn func
2 [& s c s]
3 (fn [f blame]
4 (fn [& i n s]
5 (l e t [l (∗ 2 (count i n s))
6 c l (count s c s)]
7 (i f (not (= (+ 2 l) c l))
8 (throw
9 (Excep t i on . " I n v a l i d number o f arguments f o r c o n t r a c t s ")))

10 (l e t [mon - s e t s (con - r a v e l s c s i n s)
11 p o s t s (drop l s c s)]
12 (mon (f i r s t p o s t s)
13 (second p o s t s)
14 (app l y f
15 (map (fn [x]
16 (mon (f i r s t x)
17 (second x)
18 (second (r e s t x))
19 (i n v e r t - blame blame)))
20 mon - s e t s))
21 blame))))))

Unlike our previous two combinators, this definition departs from its λπ
cs counterpart, and thus we

walk through it line-by-line:

• (line 1) we define the func form;

• (line 2) func takes a variable number of arguments as [& scs], which indicates to Clojure to

bind all of the arguments to scs as a list;

• (line 3) we follow our λπ
cs definition of fun/c, accepting a procedure to monitor and its associated

blame information;

• (line 4) we produce a new, variable-argument procedure whose inputs are bound, as a list, to

ins as the contract result;
111

• (line 5–9) when applied, we ensure that ins has the appropriate number of arguments to match

our contracts, and otherwise signal an error;

• (lines 10–11) we group together the input contracts with their strategies as mon−sets and bind

the post-condition with its strategy as posts;

• (lines 12–13) we monitor the post-condition on the procedure result;

• (line 14) we apply the monitored procedure f to the monitored pre-condition arguments

• (lines 15–20) and, as the input to f, we map over mon−sets, monitoring each contract on its

appropriate input.

While complicated in construction, this provides an elegant interface for users to define contracts

for any function regardless of argument count. For example, we can use func to define a function

contract with one input and one output, ensuring each is a natural number, and to define a function

contract with two inputs and a single output:
1 (de fn nat - natc
2 (func natc eage r natc eage r))
3
4 (de fn na txna t - natc
5 (func natc eage r natc eage r natc eage r))

Out first contract, nat−natc, will verify the monitored procedure takes and returns natural numbers

while our second, natxnat−natc, will verify the monitored procedure takes two natural numbers as

arguments and returns a natural number.

7.2.3. Defining Contracts and Strategies

With our structural definitions, monitoring forms, and combinators in place, we now define a num-

ber of verification strategies for Pisces using the Strategy record structure, developing implementa-

tions of skip, eager, semi-eager, promise-based, concurrent, and spot-checking verification. These

implementations, given in Figure 7.1, each generally follow our semantic descriptions in Chapter 5,

but we omit process creation and communication whenever possible to reduce the computational

overhead of verification.

Skip Verification. The skip verification strategy skips enforcement, discarding its contract and

returning the monitored value. In our implementation, we define skip-check , the skip verification

procedure, as a function that applies extract to the delayed term and returns the result. Then,

using this procedure, we define a Strategy instance skip that uses skip-check as its implementation.

The resultant strategy will forgo all contract checking.
112

1 ; Sk ip S t r a t e g y
2 (de fn s k i p - check
3 [c o n t r a c t dterm blame]
4 (e x t r a c t dterm))
5
6 (de f s k i p (S t r a t e g y . " s k i p " s k i p - check))
7
8 ; Eager S t r a t e g y
9 (de fn eage r - check

10 [c o n t r a c t dterm blame]
11 (c o n t r a c t (e x t r a c t dterm) blame))
12
13 (de f eage r (S t r a t e g y . " eage r " eage r - check))
14
15 ; Semi - Eager S t r a t e g y
16 (de fn semi - check
17 [c o n t r a c t dterm blame]
18 (d e l a y (c o n t r a c t (e x t r a c t dterm) blame)))
19
20 (de f semi
21 (S t r a t e g y . " semi - eage r " semi - check))
22
23 ; Promise - based V e r i f i c a t i o n
24 (de fn prom - check
25 [c o n t r a c t dterm blame]
26 (f u t u r e (c o n t r a c t (e x t r a c t dterm) blame)))
27
28 (de f prom (s t r a t e g y . " p romi se " prom - check))
29
30 ; Concur rency - based V e r i f i c a t i o n
31 (de fn conc - check
32 [c o n t r a c t dterm blame]
33 (l e t [v (e x t r a c t dterm)]
34 (do (a/go (c o n t r a c t v blame))
35 v)))
36
37 (de f conc (S t r a t e g y . " conc " conc - check))
38
39 ; Spot - check i ng V e r i f i c a t i o n
40 (de fn sp o t - check
41 [g e n e r a t o r]
42 (fn [c o n t r a c t dterm blame]
43 (l e t [f (e x t r a c t dterm)]
44 (i f (not (fn ? f))
45 (throw (Excep t i on . (s t r f " i s not a f u n c t i o n "))))
46 (l e t [c (c o n t r a c t f blame)]
47 (d o a l l
48 (map (fn [x] (c x)) (gen/ sample g e n e r a t o r 2 0)))
49 f))))
50
51 (de fn sp o t
52 [g]
53 (S t r a t e g y . " spo t " (sp o t - check g)))

Figure 7.1. Monitoring strategy implementations in Clojure.

113

For example, consider applying natc to −1 under the skip strategy:

1 > (+ 5 (mon natc s k i p - 1 blm))
2 => 4

This strategy allows programmers to disable runtime verification errors (such as in the case of

deployed systems), or allow programmers to use meta-strategies with effectful operations while

forgoing contract verification itself.

Eager Verification. Our eager verification strategy in Pisces follows our definition in Chapter 5,

suspending the user evaluator, completely verifying the contract, and continuing with the result:
1 > (+ 5 (mon natc eage r - 1 blm))
2 => Cont rac t V i o l a t i o n : ‘ - 1 ‘ v i o l a t e d ‘ natc ‘
3 Blame : . . .

To implement eager, we define the procedure eager-check to perform eager verification, applying

the input contract as a procedure to the (evaluated) monitored term and the blame information,

allowing it to proceed with verification (eschewing process creation to minimize overhead). Then,

as with skip , we use eager-check to define eager as an instance of the Strategy record.

Semi-eager Verification. As with λπ
cs, we introduce semi-eager verification in Pisces as semi,

allowing programmers to postpone contract verification until the program requires the verification

result. To reproduce semi-eager verification in Pisces, we define a semi-check procedure which

applies delay to the verification expression “(contract (extract dterm) blame)”, yielding a delayed

expression. When the program forces the delayed expression (via extract), the evaluator proceeds

with contract verification, returning the verification result to the user portion of the program:
1 > (mon natc semi 5 blm)
2 => <d e l a y . . . (natc 5) . . . >
3
4 > (l e t [x (mon natc semi - 1 blm)]
5 (+ (f a c t 5) (e x t r a c t x)))
6 => Cont rac t V i o l a t i o n : ‘ - 1 ‘ v i o l a t e d ‘ natc ‘
7 Blame : . . .

In the first example, we see that the verification expression yields a delayed form. In the second

example, invoking extract on x proceeds with verification, signaling a contract violation (since −1

is not a natural number).

Promise-based Verification. In order to recreate promise-style verification in Pisces, we borrow

Clojure’s built-in parallelism operation future , which uses the JVM’s existing thread model to

perform parallel evaluation of a given term [51]. To this end, our prom−check implementation wraps

future around the underlying verification expression, creating a new process to perform evaluation

114

while returning a promise-style future to the user program. As with semi, the user program may

retrieve this verification result via the extract operator, signaling any violation errors at that time.
1 > (mon natc prom 5 blm)
2 => <f u t u r e . . . (natc 5) . . . >
3
4 > (l e t [x (mon natc prom - 1 blm)]
5 (+ (f a c t 5) (e x t r a c t x)))
6 => Cont rac t V i o l a t i o n : ‘ - 1 ‘ v i o l a t e d ‘ natc ‘
7 Blame : . . .

As with to semi, our first example produces a computational future form and our second example

signals a contract violation when extracting x.

Concurrent Verification. Our next verification strategy is conc, which provides concurrent ver-

ification behavior in the style of the “best-effort” verification mechanisms from Chapter 5, using

Clojure’s core .async library to create concurrent verification processes that are discarded when the

user program terminates. To define this behavior, we import the core .async library as “a”, and use

a/go (i.e., go as defined in core .async) to create a new process for verification. Then, to define con-

current verification, we extract the dterm expression, binding it to v, and then proceed to create a

new, concurrent process with the appropriate verification expression before returning the evaluated

term to the initiating process. We also observe that, in Clojure, the monitoring process will signal

a contract violation but will not stop other processes from running:
1 > (l e t [x (mon natc conc - 1 blm)]
2 (+ x x))
3 => Cont rac t V i o l a t i o n : ‘ - 1 ‘ v i o l a t e d ‘ natc ‘
4 Blame : . . .
5 - 2
6 ; o r => - 2 w i thout an e r r o r

In this example, the program will yield −2 as a result, but may also signal the contract violation to

the user. This behavior, then, creates the “soft” verification mechanisms described in Chapter 5.

Spot-Checking Verification. Finally, we implement a spot-checking verification mechanism for

functions, utilizing Clojure’s input generators to verify the function’s pre- and post-condition con-

tracts hold for some number of generated inputs [30, 33]. To develop this verification technique

in Pisces, we define the verification strategy spot using Clojure’s test.check generator library (im-

ported as gen). Then, to encode spot-checking verification, we define spot-check, which takes a

generator as input and produces a verifier that, when evaluated, takes 20 elements from the gen-

erator and applies the contracted function to each input. If the contract produces a violation, the

115

spot-checker reports it to the user process; otherwise, the verifier returns the original function as

the contract result.

Unlike our previous strategies, we do not define a single Strategy record using spot-check. Instead,

we define a spot procedure that takes an input generator and creates a new Strategy instance for

it. This hints at the extensible nature of Pisces: each invocation of spot develops a bespoke

verification strategy for the given generator, allowing users to store and reuse these strategies.

For example, using spot and Clojure’s test.check natural number generator as gen/nat, we may define

and use a spot-checking strategy to ensure a procedure works over natural numbers:
1 (de f sp o t - check - nat (sp o t gen/ nat))
2
3 > (mon nat - natc sp o t - check - nat (fn [x] (+ x 1)) blm)
4 => <. . . f u n c t i o n . . . >
5
6 > (mon nat - natc sp o t - check - nat (fn [x] (- x 10)) blm)
7 => Cont rac t V i o l a t i o n : output ‘ - 8 ‘ v i o l a t e d ‘ natc ‘

In these examples, we reuse the bespoke spot-check−nat to spot-check that two procedures take and

return natural numbers, detecting a violation in the second case.

Overall, this approach to defining new strategies allows programmers to write customized verifica-

tion strategies, extending Pisces to fit their program’s requirements.

7.2.4. First-class Strategy Verification.

As with λπ
cs, our Pisces library treats strategies as first-class values and, as such, programmers can

use the same multi-strategy verification approaches as we saw in Chapter 5. For example, consider

a recursive definition of factorial that extracts its input:
1 (de fn f a c t
2 [x]
3 (l e t [n (e x t r a c t x)]
4 (i f (z e r o ? n) 1 (∗ n (f a c t (- n 1))))))
5
6 > (+ (f a c t (mon natc semi 5 blm)) (f a c t 5))
7 => 240

Using func, we can define a strategy-parameterized contract as:

1 (de fn na t f unc [s t r a t] (func natc s t r a t natc eage r))

We parameterize this contract by its pre-condition subcontract, dictating how to enforce natc on the

contracted function’s input, fixing the post-condition strategy. Using this variance, we can choose

multiple verification behaviors:

116

1 (de f f a c t - ee (mon (na t f unc eage r) eage r f a c t blm))
2
3 > (f a c t - ee 5)
4 => 120

1 (de f f a c t - s e (mon (na t f unc semi) eage r f a c t blm))
2
3 > (f a c t - s e 5)
4 => 120

1 (de f f a c t - s p o t (mon (na t f unc eage r) sp o t - check - nat f a c t blm))
2
3 > (f a c t - sp o t 5)
4 => 120

In our first example, we use the eager strategy; in the second, we check the pre-condition via

semi-eager verification; in our final example, we once again use spot-check−nat to spot-check that

the underlying fact procedure works over natural numbers, using eager to ensure the pre- and

post-conditions hold for each random test.

7.3. Meta-strategies in Pisces

The last component of our Pisces implementation focuses on meta-strategies, developing with,

comm, random, and memo from Chapter 6 in Pisces. We give each of these definitions in Figure 7.2

in terms of the Metastrat record constructor, once again following the pattern of defining a checking

procedure to use for a Metastrat instance.

The with Meta-strategy. Following Chapter 6, the with meta-strategy takes a sub-strategy and

a procedure, applies the procedure to the contracted result (using indy-style blame), and returns

the contracted term.

The comm Meta-strategy. As before, the comm meta-strategy is a special-case variation of the

with meta-strategy that provides inter-process communication. After contract verification, the

meta-strategy applies f to the verification result, writes this new value across the appropriate

channel (using a/put! from core .asnyc), and, finally, returns the contracted value to the initiating

process.

The random Meta-strategy. The random meta-strategy provides probabilistic checking as per

random from Chapter 6. We implement random in Pisces by generating a random number and

testing it against the given rate: if the random number is less than the rate, we proceed with

verification using the given sub-strategy; if not, we return the (forced) monitored expression.
117

1 ; With - Operato r V e r i f i c a t i o n
2 (de fn with - check
3 [fun]
4 (fn [c o n t r a c t sub - s t r a t dterm blame]
5 (l e t [v a l (e x t r a c t dterm)
6 r e s (mon c o n t r a c t sub - s t r a t v a l blame)]
7 (do (fun (mon c o n t r a c t sub - s t r a t v a l (i ndy - blame blame)))
8 r e s))))
9

10 (de fn with
11 [fun s t r a t]
12 (Meta s t r a t . " w i th " (with - check fun) s t r a t))
13
14 ; Communicating V e r i f i c a t i o n
15 (de fn comm - check
16 [channe l fun]
17 (fn [c o n t r a c t sub - s t r a t dterm blame]
18 (l e t [v a l (e x t r a c t dterm)
19 r e s (mon c o n t r a c t sub - s t r a t v a l blame)
20 i ndyb (i ndy - blame blame)]
21 (do (a/ put ! channe l
22 (fun (mon c o n t r a c t sub - s t r a t v a l i ndyb)))
23 r e s))))
24
25 (de fn comm
26 [chan fun s t r a t]
27 (Meta s t r a t . "comm" (comm - check chan fun) s t r a t))
28
29 ; Random V e r i f i c a t i o n
30 (de fn random - check
31 [r a t e]
32 (fn [c o n t r a c t sub - s t r a t dterm blame]
33 (i f (< (rand) r a t e)
34 (mon c o n t r a c t sub - s t r a t (e x t r a c t dterm) blame)
35 (e x t r a c t dterm))))
36
37 (de fn random
38 [r a t e s t r a t]
39 (Meta s t r a t . " rand " (random - check r a t e) s t r a t))
40
41 ; Memoizing V e r i f i c a t i o n
42 (de fn memo - check
43 [c o n t r a c t sub - s t r a t dterm blame]
44 (mon (memoize c o n t r a c t) sub - s t r a t (e x t r a c t dterm) blame))
45
46 (de fn memo
47 [s t r a t]
48 (Meta s t r a t . "memo" memo - check s t r a t))

Figure 7.2. Monitoring meta-strategy implementations in Clojure.

118

As expected, this behavior is sufficient to recreate our binary-search tree insertion example Chap-

ter 6, using random to verify the contract one-tenth of the time:
1 (de f b s t - i n s
2 (mon (func (random 0 .1 eage r) (b s t c (random 0 .1 eage r)) eage r natc
3 eage r anyc)
4 eage r
5 bs t - i n s e r t
6 blm))

In this example, we verify the function’s post-condition, bstc eager, via (random 0.1 eager), dictating

that verification should occur one-tenth of the time.

The memo Meta-strategy. The memo meta-strategy, analogous to memo in Chapter 6, memoizes

contracts using Clojure’s built-in memoize operation (which takes a procedure and automatically

returns a memoized version). Our implementation applies memoize to the contract before proceeding

with verification, allowing us to cache the verification results.

As with random, this is particularly effective for reducing performance overhead for contracted

functions. For example, the following code will check each input and output to fact exactly once,

memoizing the contract results:
1 (de f f a c t -m
2 (mon (func (memo eage r) natc
3 (memo eage r) natc)
4 eage r
5 f a c t
6 blm))

In this example, we memoize the pre- and post-conditions, and, as a result, subsequent invocations

of fact−m will forgo re-verifying the same contract on the same input:
1 > (f a c t -m 5)
2 => 120
3
4 ; ; W i l l not v e r i f y 5 or 120 a r e n a t u r a l numbers
5 > (f a c t -m 5)
6 => 120

7.4. Case Studies: Advanced Examples using Pisces

So far, we have introduced Pisces, a library that recreates the key runtime verification features of

λπ
cs in the Clojure programming language. To conclude our presentation of this implementation,

we now explore three case studies using Pisces:
119

(1) we revisit our recursive binary-search tree contract parameterized by its recursive and node-

level enforcement, exploring how strategies impact performance (§7.4.1);

(2) we implement our transition-based meta-strategies from Chapter 6 to recreate state machine

runtime verification in Pisces (§7.4.2);

(3) and, finally, we use our process-based approach to algebraic effects from Section 6.6 to develop

a system for function profiling (§7.4.3).

7.4.1. Multi-Strategy Monitors

Our first case study revisits our binary-search tree contract from Section 5.8.2. In that section, we

demonstrated that the multi-strategy approach to contract verification allows users to flexibly reuse

contracts to yield multiple verification behaviors. We recreate this example in Pisces, including

the relevant combinator and contract. In Figure 7.3, we define a record to represent a tree node, a

dependent tree contract combinator treedc, and, finally, define bstc, a tree contract parameterized

by two strategies: rec−strat, which determines how to recursively enforce bstc on sub-trees, and

value−strat, which determines how to enforce the value contract on each value in the tree.

As before, we may use this contract in various ways by changing its strategy parameters, varying

these parameters to alter the contract’s performance characteristics and guarantees. Using eager

for both strategies, for example, will completely traverse the tree, checking each node (an O(n)

operation):

1 > (mon (b s t c eage r eage r) eage r t r e e blm)
2 => <t r e e . . . >

As before, this O(n) traversal may be unsuitable as a contract for an O(logn) binary-search tree

insert function, but we may recover our asymptotic behavior with the semi strategy:

1 > (mon (b s t c semi eage r) eage r t r e e blm)
2 => <t r e e . . . >

As described in our previous discussions, we may also use prom at the top level verification form,

creating a computational future that performs a concurrent O(n) traversal and contract verification

on the tree:

1 > (mon (b s t c eage r eage r) prom t r e e blm)
2 => <f u t u r e . . . >

Further, our two-strategy parameterization allows us to change the contract behavior along two

axes by allowing us to control the recursive verification strategy and how to verify each node’s value

120

1 (d e f r e c o r d BinTree [v a l l e f t r i g h t])
2
3 (de fn t r e e d c
4 " Dependent t r e e c o n t r a c t combinator "
5 [c l e a f s l e a f c v a l s v a l c l e f t c r i g h t s r e c]
6 (fn [t r e e blame]
7 (i f (n i l ? t r e e)
8 (mon c l e a f s l e a f t r e e blame)
9 (l e t [v (: v a l t r e e)]

10 (BinTree .
11 (mon c v a l s v a l v blame)
12 (mon (c l e f t v) s r e c (: l e f t t r e e) blame)
13 (mon (c r i g h t v) s r e c (: r i g h t t r e e) blame))))))
14
15 (de fn b s t - range [l o h i] (fn [v] (and (>= v l o) (<= v h i))))
16
17 (de fn b s t c
18 " B ina ry s e a r c h t r e e c o n t r a c t "
19 [r e c - s t r a t v a l u e - s t r a t]
20 (l e t f n [(b s t c [l o h i]
21 (t r e e d c
22 anyc eage r
23 (p redc (b s t - range l o h i)) v a l u e - s t r a t
24 (fn [v] (b s t c l o (e x t r a c t v)))
25 (fn [v] (b s t c (e x t r a c t v) h i))
26 r e c - s t r a t))]
27 (b s t c I n t e g e r /MIN_VALUE I n t e g e r /MAX_VALUE)))

Figure 7.3. A strategy-parameterized contract for ensuring a binary tree is a binary-search
tree, using the dependent tree contract combinator treedc. We assume leaves are nil values.

contract. For example, consider enforcing bstc with semi as the recursive strategy and eager as the

node-value strategy on tree−wrong, which is not a binary-search tree:
1 (de f t r e e - wrong
2 (BinTree . 5
3 (BinTree . 6 n i l n i l)
4 (BinTree . 7 n i l n i l)))
5
6 > (e x t r a c t
7 (: l e f t
8 (e x t r a c t (mon (b s t c semi eage r) semi t r e e - wrong blm))))
9 => Cont rac t V i o l a t i o n : ‘ 6 ‘ v i o l a t e d ‘ b s t - range ‘

In this invocation, we extract the verification result before retrieving the left subtree, verifying the

contract (bst−range Integer/MIN_VALUE 5) on 6 and signaling an error. If, however, we use semi for

the node value contracts, the resultant structure further delays the node’s value contract:
121

1 > (e x t r a c t (: l e f t (e x t r a c t (mon (b s t c semi semi) semi t r e e - wrong blm))))
2 => <d e l a y . . . >
3
4 > (l e t [t r e e (e x t r a c t (mon (b s t c semi semi) semi t r e e - wrong blm))
5 node (e x t r a c t (: l e f t t r e e))])
6 (e x t r a c t (: v a l node))
7 => Cont rac t V i o l a t i o n : ‘ 6 ‘ v i o l a t e d ‘ b s t - range ‘

Instead of enforcing each value contract when extracting the node itself, this monitoring structure

returns a BinTree node that contains a delayed value field, requiring the program to further extract

the value to verify the contract.

This contract provides precise control over verification at each level, demonstrating the flexible

nature of our first-class strategies, allowing programmers using Pisces (and λπ
cs) to choose the

best-fit strategy in each situation without redefining the contract in each case.

7.4.2. State Machine Runtime Verification as User-Defined Meta-strategies

Our second case study revisits the state-based transition system presented in Chapter 6. We

recreate this behavior in Pisces to demonstrate the extensible nature of our Pisces library: all of

the code in this case study is part of a user program in Clojure, separate from our Pisces library.

We proceed by defining a pair of transition meta-strategies, using them to build our previous hasNext

and next monitors for Java iterators, and using these monitors to verify a program always invokes

hasNext on such iterators before retrieving the next value.

Transition Meta-Strategy System. We start with the transition and transition−as meta-strate-

gies, given in Figure 7.4. We use a Clojure reference cell (created with ref) to track the current

machine state, defining the transition and transition−as meta-strategies as operations over this

reference as follows:

• The transition meta-strategy takes the strategy state (i.e., a reference to the current state),

a from-state indicating the transition source, a to-state transition target, and a substrat sub-s-

trategy indicating how to verify the contract.

• The transition−as meta-strategy takes the strategy state and a procedure transition-fn param-

eterized by the current strategy state and the contracted value. If the transition-fn returns

the state : error , the meta-strategy signals an error; otherwise, we update the state with the

resultant value and return the verification result to the user portion of the program.
122

These encodings directly correspond to Definition 6.5, utilizing Clojure’s dosync operator to ensure

atomic reference updates.

State-Transition Contracts. Using this transition meta-strategy system, we now develop a pair

of contracts to verify a program correctly invokes hasNext on an iterator (and it returns true) before

retrieving the next value, adhering to the state machine in Figure 6.1.

We present this implementation in Figure 7.5, recreating our λπ
cs definitions using transition and

transition−as :

• We model .next’s behavior using transition — if the current state is :some, we transition to

the :unknown state, and, if the current state is not :some when we call .next on the iterator,

we produce an error.

• We model .hasNext’s behavior based on its result (that is, as a flow-dependent transition based

on .hasNext’s output): after we run .hasNext, we use transition−as to inspect .hasNext’s result,

transitioning to the appropriate state.

Verifying State-Machine Behavior. Using the contracted nextm and hasNextm, we can now

ensure our programs correctly check that a given iterator has additional values before attempting

to retrieve them:
1 ; ; Example 1
2 > (l e t [i t e r (. i t e r a t o r (. keySet (j a v a . l ang . System/ g e t P r o p e r t i e s)))]
3 (w h i l e (hasNextm i t e r) (p r i n t l n (nextm i t e r))))
4 => . . .
5
6 ; ; Example 2
7 > (l e t [i t e r (. i t e r a t o r (. keySet (j a v a . l ang . System/ g e t P r o p e r t i e s)))]
8 (p r i n t l n (nextm i t e r)))
9 => Program per fo rmed i n v a l i d o p e r a t i o n :

10 Cur r en t s t a t e : (: unknown) T r a n s i t i o n : : some -> : unknown

In the first example, the program correctly calls hasNextm before retrieving each element of the

iterator, terminating as expected. In the second example, however, the program invokes next on

the iterator before invoking hasNextm, an invalid state transition, and the transition verification

mechanism signals an error.

Summary. Overall, this case study illustrates the extensible nature of Pisces: working from the

Pisces record definitions, we have developed a new series of meta-strategies, creating additional,

practical runtime verification mechanisms as natural extensions to the existing Pisces library.
123

1 (de fn make - c o n t r a c t - s t a t e
2 [s t a r t - s t a t e]
3 (r e f (l i s t s t a r t - s t a t e)))
4
5 (de fn i n ?
6 [c o l l elm]
7 (some #(= elm %) c o l l))
8
9 (de fn t r a n s i t i o n - check

10 [s t a t e - r e f from - s t a t e to - s t a t e]
11 (fn [c o n t r a c t sub - s t r a t dterm blame]
12 (l e t [r e s (mon c o n t r a c t sub - s t r a t (e x t r a c t dterm) blame)]
13 (i f (i n ? (d e r e f s t a t e - r e f) from - s t a t e)
14 (dosync (r e f - s e t s t a t e - r e f
15 (i f (l i s t ? to - s t a t e) to - s t a t e (l i s t to - s t a t e)))
16 r e s)
17 (throw (Excep t i on . (s t r " Program per fo rmed i n v a l i d t r a n s i t i o n : \ n"
18 " Cur r en t s t a t e : " (d e r e f s t a t e - r e f)
19 " T r a n s i t i o n : " from - s t a t e
20 " -> " to - s t a t e "\n")))))))
21
22 (de fn t r a n s i t i o n
23 [s t a t e - r e f from - s t a t e to - s t a t e s t r a t]
24 (Meta s t r a t . (s t r " t r a n s i t i o n " from - s t a t e to - s t a t e)
25 (t r a n s i t i o n - check s t a t e - r e f from - s t a t e to - s t a t e)
26 s t r a t))
27
28 (de fn t r a n s i t i o n - as - check
29 [s t a t e - r e f t r a n s i t i o n - f n]
30 (fn [c o n t r a c t sub - s t r a t dterm blame]
31 (l e t [r e s (mon c o n t r a c t sub - s t r a t (e x t r a c t dterm) blame)
32 to - s t a t e (t r a n s i t i o n - f n (d e r e f s t a t e - r e f) r e s)]
33 (i f (not (= to - s t a t e : e r r o r))
34 (dosync (r e f - s e t s t a t e - r e f
35 (i f (l i s t ? to - s t a t e) to - s t a t e (l i s t to - s t a t e)))
36 r e s)
37 (throw (Excep t i on . (s t r " Program per fo rmed i n v a l i d o p e r a t i o n : \ n"
38 " Cur r en t s t a t e : "
39 (d e r e f s t a t e - r e f) "\n")))))))
40
41 (de fn t r a n s i t i o n - as
42 [s t a t e - r e f t r a n s i t i o n - f n s t r a t]
43 (Meta s t r a t . (s t r " t r a n s i t i o n - as ")
44 (t r a n s i t i o n - as - check s t a t e - r e f t r a n s i t i o n - f n)
45 s t r a t))

Figure 7.4. State transition verification as meta-strategies. We have omitted the Exception
messages due to length.

124

1 (de f i t e r - s t a t e (r e f (l i s t : unknown)))
2
3 (de f nextm
4 (mon (func eage r anyc
5 (t r a n s i t i o n i t e r - s t a t e
6 : some
7 : unknown eage r)
8 anyc)
9 eage r

10 #(. nex t %)
11 blm))
12
13 (de fn hasNextTrans
14 [con - r e s u l t cu r - s t a t e]
15 (i f (e x t r a c t con - r e s u l t) : some : none))
16
17 (de f hasNextm
18 (mon (func eage r anyc
19 (t r a n s i t i o n - as i t e r - s t a t e
20 hasNextTrans
21 eage r)
22 anyc)
23 eage r
24 #(. hasNext %)
25 blm))

Figure 7.5. A flow-dependent finite-state machine Pisces implementation.

7.4.3. Function Timing via Concurrent Logging

Our final case studes follows the effects-as-process methodology we present in Section 6.6, using

the comm strategy and a concurrent process that acts as a “timing report manager” to develop a

series of operations that use our verification framework to achieve function time profiling. While

this timer performs a similar operation to the timer implementation in §6.1, this approach follows

our effect-process approach from Chapter 6, allowing us to use session-style effect operations that

interact with—and supplement—contract verification.

We present this implementation in Figure 7.6, where we import Clojure’s core .async library as a. Our

definition proceeds as our state-effect example in Chapter 6, wherein we define an effect procedure

and proceed with developing contracts that communicate with this procedure via meta-strategies.

We begin by defining timer−task to serve as the main loop of the concurrent timer process. This

procedure takes two communication channel arguments, in−chan and out−chan, for receiving input

and sending output (respectively), and timer−info, a list of timing information reported so far. As

with our state manager in the previous chapter, each loop of the report manager reads in an action
125

1 (de fn t im e r - t a s k
2 [i n - chan out - chan t im e r - i n f o]
3 (l e t [a c t i o n (a / <!! i n - chan)]
4 (cond
5 (= a c t i o n : r e s u l t)
6 (l e t [r e s (f i l t e r #(= (f i r s t %) : t ime) t im e r - i n f o)]
7 (a / >!! out - chan
8 (/ (r educe + (map second r e s))
9 (f l o a t (count r e s)))))

10 (and (l i s t ? a c t i o n) (= (f i r s t a c t i o n) : p re))
11 (t i m e r - t a s k
12 i n - chan out - chan
13 (cons (l i s t : p r e (second a c t i o n)) t im e r - i n f o))
14 (and (l i s t ? a c t i o n) (= (f i r s t a c t i o n) : pos t))
15 (t i m e r - t a s k
16 i n - chan out - chan
17 (cons (l i s t : t ime
18 (- (second a c t i o n)
19 (second (f i r s t t im e r - i n f o))))
20 (r e s t t im e r - i n f o)))
21 : e l s e
22 (t i m e r - t a s k i n - chan out - chan t im e r - i n f o))))
23
24 (de fn s t a r t - t im e r - t a s k
25 [i n - chan out - chan]
26 (a/go (t im e r - t a s k i n - chan out - chan (l i s t))))
27
28 (de fn t im e r - func
29 [i n - chan out - chan]
30 (do
31 (s t a r t - t im e r - t a s k i n - chan out - chan)
32 (func (comm i n - chan
33 (fn [_] (l i s t : p r e (cu r - t ime)))
34 eage r)
35 anyc
36 (comm i n - chan
37 (fn [_] (l i s t : po s t (cu r - t ime)))
38 eage r)
39 anyc)))

Figure 7.6. Function timing with a concurrent process.

across the communication channel in−chan and then performs the appropriate behavior indicated

by this action5:

• the “result" action computes the average performance time from the timings list and writes it

across out−chan, recurring appropriately;
5We observe that this task is not thread-safe insofar as any number of processes may read from the same channel at
once, and thus one process may receive another process’s result. Modifying our timer task to provide thread-safety
are beyond the scope of our presentation, but we refer the curious reader to the calculus presented by Orchard and
Yoshida [70] for a solution.

126

• the “startTime" action accepts a new start time indicating the start time of a timing action,

recurring with the start time and the flag active, indicating the timing is active;

• the “endTime" action accepts a new end time, recurring with a false active variable and updated

timing list;

• the “endTask" action terminates the timer process with the value unit;
• and the task ignores any other action, recurring.

At each recursive invocation of timer−task, the report manager reads and performs the appropriate

action (e.g., storing a function start time or end time, end time, retrieving the overall timing

result, or terminating the timing process) and recurs on itself, maintaining a list of execution

times between recursions (by storing each pre-condition enforcement time-stamp and computing

its difference from the post-condition enforcement time-stamp). We also provide start−timer−task

for ease of use in creating the new process.

In addition to this report manager, we also define the timer−func function contract which starts a

timing task and uses comm to report the current (tagged) system timestamp to the timing process

at each pre- and post-condition contract verification site.

Using these pieces in conjunction, we can time a factorial procedure as:
1 > (l e t [i n (a/ chan)
2 out (a/ chan)
3 f (mon (t im e r - func i n out) eage r f a c t blm)]
4 (f 15)
5 (f 5)
6 (a/ put ! i n : r e s u l t)
7 (a / <!! out))
8 => 104.33

In this usage example, we define input and output channels in and out (respectively); monitor

the fact procedure with timer−func (which initiates a time-task via start−timer−task); invoke the

monitored procedure a number of times; and, finally, retrieve the timing result. This program

yields 104.33, indicating the average runtime of our two invocations.

This case study ultimately demonstrates the viability of our general approach, exhibiting how

concurrent effect-style processes can collaborate with the contract verification system to perform

general runtime inspection (and verification) in a real-world setting.
127

Summary—The Pisces Library

In this chapter, we developed the Pisces library, demonstrating how a modern programming lan-

guage provides the necessary features to implement our multi-strategy and meta-strategy runtime

verification approach whole-cloth in terms of existing language mechanisms. This insight suggests

that our approach provides direct and actionable results for anyone hoping to use this style of run-

time framework for anything from contract verification to function profiling, providing programmers

with the tools to reason about their programs during execution.

128

C H A P T E R 8

Related Works

synopsis
In this chapter, we discuss related works in the field of runtime verification and, in

particular, software contract verification (§8.1), software contract metatheory (§8.2),

contract verification blame (§8.3), contract system implementations (§8.4), and other

runtime verification systems (§8.5).

The first language for specification and verification was Gypsy, introduced by Ambler et al. [5].

Much other work has gone into profiling and inspecting programs at runtime, leading to Meyer [66]

introducing software contracts with the language Eiffel, along with our moderns notions of pre-

and post-condition contract enforcement. Findler and Felleisen [36] brought software contracts

into functional languages, where they have since thrived as runtime verification tools. Our work

builds on this concept, generalizing software contracts and abstracting their verification mechanisms

to support multiple verification strategies along with generic runtime verification and inspection

operations.

8.1. Software Contracts

After Findler and Felleisen [36] brought software contracts into functional programming, a cottage

industry of software contract verification techniques sprung up [15, 22, 26, 29, 37, 52, 68]. Swords

et al. [80] provides a framework for expressing their interactions, and we extend and revise that

work. Our presentation in Chapters 5-6 discuss multiple such strategies, accounting for each either

in explicit detail or via implementation sketches.

In the rest of this section, we discuss four additional related portions of the literature: other surveys

of contract verification strategies, alternative software contract verification techniques (including

static enforcement), other systems that implement software contract verification with processes, and

systems to provide contracts in lazy (e.g., call-by-name and call-by-need) programming languages.
129

8.1.1. Surveys of Contract Verification

Degen et al. [22] present descriptions of eager, semi-eager, and lazy software contract verification

systems, characterizing each system’s behavior in a call-by-need programming language via four

properties (meaning reflection, meaning preservation, faithfulness, and idempotence). They ulti-

mately conclude that “faithfulness is better than laziness.” Dimoulas and Felleisen [25] go further,

classifying different approaches through observational equivalence, based on when and how veri-

fication proceeds (with axes of static versus run-time and tight, loose, or shy-loose respectively).

They also introduce the notion of a shy contract, which is analogous to the lazy verification pre-

sented by Degen et al. [22]: it is only allowed to inspect parts of the program the user program

evaluates. Degen et al. [24] revisit different contract verification systems in call-by-need languages,

evaluating them for completeness and meaning preservation, classifying a number of contract sys-

tems [16, 22, 36, 52, 86] by these properties. Conversely, our work follows Swords et al. [80]: instead

of classifying verification strategies via secondary properties, we have presented a semantic-based

comparison by directly encoding each verification strategy in λπ
cs.

8.1.2. Alternative Contract Enforcement Mechanisms

Our presentation uses runtime enforcement of contracts that all exist at the value level. This is not,

however, the only enforcement mechanism available. Ou et al. [71], Flanagan [38], and Greenberg

et al. [44] each present a model of contract usage similar to refinement types [40] tracking these

contracts at the type level and enforcing (and accruing) them as values flow through these types.

The work by Greenberg et al. [44] in particular has recently been the subject of multiple extensions,

including efficiency [43] and data-types [76]. While manifest contracts are closely related to standard

contracts (and Racket’s chaperone and impersonator system [79]), our work treats contracts as

values instead of type-level terms.

Xu et al. [86] and Nguyen et al. [69] both present static verification models for contract verification,

using static analyses to determine which contracts hold prior to running the program. While

related, this style of static checking is orthogonal to our presentation here: we do not attempt

to subsume static checking with our framework. Clojure’s core.spec library [49] also supports

enforcing contracts in different ways. Unlike our multi-strategy approach, however, the core.spec

library allows users to determine which programming phase to check the provided specification

(or “spec”) at: the spec written for the program allows programmers to both instrument the

runtime (via software contracts) and to generate sample data to probabilistically check functions,
130

etc., without running the program itself. Combining our multi-strategy approach with multi-phase

checking remains as future work.

Finally, Shinnar [77] presents contract assertions in the context of concurrency and software-trans-

actional memory, focusing on effectful contracts interacting with Software Transactional Memory

in Haskell, using Haskell’s monadic effect system. They introduce the idea of delimited checkpoints

for STM, allow the runtime to observe (and roll back) memory changes, supporting specification

contracts alongside “framing” contracts, which ensure programs do not exhibit specific behaviors,

and separation contracts, which combine these to provide separation logic-style behavior. The

roll-back capabilities also allow the program to undo effects in the event of contract violations.

Integrating such a mechanism into λπ
cs may allow us to address the effect-related shortcomings of

promise-based and concurrent contract verification, and this integration remains as future work.

8.1.3. Contracts as Processes

Dimoulas et al. [26] and Disney et al. [31] each explore the notion of contracts using message passing,

and, further, the runtime verification literature contains a number of additional examples of using

messages to verify program properties [7, 13, 46]. In each case, however, the work has different

design goals from Swords et al. [80] and our work. Dimoulas et al. [26] model and explore concurrent

contracts; Disney et al. [31] precisely model and explain temporal contracts with non-interference

and trace completeness; our work models and explores how models contracts as secondary evaluators

and varying the interactions with these evaluators allows us to encode multiple verification strategies

in the same framework.

Dimoulas et al. [26] introduce concurrent contracts via future contracts, which send terms and their

contracts, as messages, to a secondary evaluator for verification. Dimoulas et al. [26] observe that

this approach is familiar in the broader runtime verification community. We extend the idea of

a secondary contract evaluator to creating a separate evaluator for each individual contract, and

vary this communication structure to provide programmers with myriad verification mechanisms

that they may choose on a per-contract basis.

Disney et al. [31] utilize multiple contract verification processes to monitor and validate communica-

tions as (quasi-)recursive, long-running middle-man processes that mediate module interactions. In

their system, contracts forward messages between these modules, inspecting constants and starting

sub-monitors for structural contracts. This process separation uses isolation to ensure, a priori,

131

contract non-interference. Our approach and focus differs in that we do not model “client” and

“server” modules, instead presenting a user “program” interacting with contract processes directly;

we do not require (or desire) non-interference in our contracts, allowing them to inspect modify,

and otherwise manipulate contracted terms (e.g., by installing wrappers); and, finally, the focus of

our work is allowing contracts to vary their method of verification the program on a per-contract

basis and exploring these interaction patterns for programmer utility and semantic breadth.

Even so, these works share a notion of contracts as processes, suggesting that we may encode the

temporal contracts outlined by Disney et al. [31] in λπ
cs, and, similarly, that we might modify their

calculus to support λπ
cs-style multi-strategy verification (via adding delay operations and modifying

their guard procedure) at the cost of some of their guarantees (such as non-interference).

8.1.4. Contracts in Lazy Languages

Chitil et al. [17] brought runtime verification to Haskell as assertions, which eschews blame and uses

assertions closer to comprehensions than the contract structures we have seen here. Hinze et al.

[52] introduced full contracts with blame and a strict assertion operation for Haskell, inducing our

current notion of “semi-eager” verification. Chitil [15] also encode semi-eager verification in the

Haskell language following by almost direct implementation of Findler and Felleisen [36] into a

call-by-name language.

Degen et al. [22] introduce and compare semi-eager and eager verification in Haskell. They present

a semi-eager contract system as a direct encoding of the contract verification presented by Findler

and Felleisen [36], relying on Haskell’s underlying semantics to add the appropriate laziness. Their

eager implementation, conversely, utilizes Haskell’s seq operator to subvert Haskell’s evaluator into

forcing eagerly-contracted expressions. Degen et al. [23] use a monadic meta-theory to describe

semi-eager and lazy behavior in Haskell.

Reformulating our own contract interactions in a lazy variation of λπ
cs follows similarly, but presents

a unique challenge in the form of intermixing strategies: we must, at some point, stop the strictness

behavior to avoid over-evaluating lazy subcontracts. This ultimately requires both forcing and

“unforcing” operations in order to top strict evaluator positions from over-evaluation. For example,

consider evaluating

mon (pair/c nat/c semi nat/c semi) eager (5, -1)B

132

The two interior contract must “unforce” the forcing operation of the outer semi if they are to

ensure delayed verification behavior, mirroring our delay/force interactions in λπ
cs.

8.2. Contract Metatheory

Blume and McAllester [11] present the first exploration of contract metatheory, introducing and

exploring contract safety for eager contracts, and Findler and Blume [35] describe function contracts

as pairs of projections. We diverge from contracts as pairs of projections, following Findler’s later

position that this view was too rigid [34].

Guha et al. [45] present the problem of parametric, polymorphic contracts as first-order values, and

Ahmed et al. [3] revisit this problem and prove parametricity. We appeal to this notion in our type

system, relying on polymorphic contract combinators.

Finally, Keil and Thiemann [57] provide denotation semantics for eager contract verification. While

the system here is, in some sense, a metatheory for verification, we do not claim strong mathematical

properties about any individual strategy (though it may be possible to recover them through further

embedding proofs).

8.3. Complete Blame and Contract Monitoring

Multiple approaches to runtime verification blame assignment have been proposed [2, 27, 28, 44, 84],

with special attention given to function contracts (and, in particular, dependent function contracts).

Since our contract combinators are library functions, we can provide any blame assignment approach

necessary (including indy semantics [27]).

As for correct verification, Dimoulas et al. [28] introduce the notion of complete monitoring, a

fundamental correctness criterion for contract systems that generalizes correct blame assignments

by ensuring they monitor each value that moves between components. Unfortunately, proving this

property for λπ
cs is particularly challenging for a number of reasons. First, their definition relies on

multiple modules. We would need to first extend λπ
cs with a module model (likely as interacting

processes, following Disney et al. [31]). Second, Dimoulas et al. [28] use an ownership-and-obligation

model to define complete monitoring, and we would need to replicate this in a multi-process setting

where we explicitly model each contract verifier as a separate entity. In particular, we would need

to address how value ownership changes when transferring value to monitors and, further, when

transferring results (e.g., when values flow through multiple monitors toward the answer, such as for
133

pairs, or forcing a delayed reference after communicating it between processes). Finally, complete

monitoring is tells us little about some strategies, including concurrent: complete monitoring

only requires that the program terminates with a value, diverges, or correctly detects a contract

violation, and, if we verify every contract under concurrent, a λπ
cs scheduler may always complete

the user process without checking any outstanding contracts. This suggests that, in the context of

“best-effort” contracts, complete monitoring is not a sufficient requirement.

8.4. Contract Implementations

Our own implementation deviates from our semantic framework in two ways: first, that we avoid

processes and parallelism whenever possible to reduce contract enforcement overhead and, second

that we introduce the notion of meta-strategies.

Racket’s contract system provides multiple options when enforcing contracts by accepting addi-

tional, optional flags to its check form [37]. Our λπ
cs and Pisces frameworks use a more direct

approach, asking programmers to select strategies as primary, first-order directives.

Clojure’s core .spec system uses the notion of “specifications” with different enforcement methods,

including compile-time analysis and runtime checking. Unlike Pisces, where a function may be en-

forced at each use or spot-checked, higher-order function inputs are always spot-checked in core .spec.

Combining the multi- and meta-strategy approach with core .spec remains as future work.

Cartwright and Felleisen [12] describe using communication to model effects, and the recent rise of

algebraic effect models [10, 56, 61, 64] and their close connection to effects-as-processes [70] have

opened the door for managing algebraic effects as process interactions, which is a natural fit with

our process-based contract verification framework, and, ultimately our runtime instrumentation

examples. As far as we know, this is the first work to leverage this connection in the context of

contract verification.

8.5. Runtime Verification and Instrumentation

As stated at the start of this chapter, the first language for specification and verification was Gypsy,

introduced by Ambler et al. [5]. Since then, runtime verification and instrumentation has been an

active area of research, facilitating the inspection of program behavior to detect runtime issues

including race conditions, exceptions, resource leaks, and uninitialized memory, and, further, to

produce time and memory performance information for program executions.
134

Beyond Meyer’s “Design by Contract” approach, this field of research had yielded been myriad

proposals for verification systems, including generic runtime verification systems [46] and monitor-

ing-oriented programming [13, 14, 54].

8.5.1. Generic Runtime Verification Systems

There has been myriad research projects in the field of runtime verification [8, 47, 78] yielding

countless runtime verification systems [4, 9, 14, 21, 42, 46, 59, 63]. Moore et al. [68] outline the

primary differences between this style of runtime verification and software contract systems as

follows:

Contract systems live inside of programming languages while runtime verification tools

live outside. In other words, higher-order contract systems are extensions of programming

languages, and run-time verification systems are elements of a language’s external tool

chain.

Our work presented here maintains this distinction, including contracts and strategies as first-class

entities in the user program. In addition to living inside of the programming language itself, our

contract system also provides programmers with the ability to write contracts that can appear to

exist outside of it, i.e., in isolated, interacting processes. Our effectful tree fullness case study in

Chapter 7 exhibits this secondary behavior, allowing us to replicate a sort of “external” verifier as a

secondary process that interacts with the program through the mon form, allowing us to effectively

emulate runtime verification tools that exist as part of an external tool chain.

8.5.2. Monitoring-Oriented Programming

Monitoring-oriented programming (MOP) [13, 14] is a form of specialized aspect-oriented program-

ming [58], wherein the aspects are (formal) behavioral specifications, providing programmers with

facilities to define program specifications that are automatically integrated into the underlying

program. Our contract-based system takes a different tactic, requiring that programmers write

individual contracts to verify the program’s behavior. To summarize , monitoring-oriented pro-

gramming (and aspect-oriented programming in general) reasons about code, whereas λπ
cs reasons

about values.

Even so, we demonstrate that λπ
cs has the potential to replicate this MOP behavior similar ap-

proach to the first property in Chapter 6, defining the transition-based strategies to manage a
135

formal state machine specification, and Dimoulas et al. [30] further demonstrate multiple applica-

tions of design-by-contract systems that use formal specification languages to define global system

properties.

Chen and Roşu [13] also identify that contract systems always performing verification in the same

process at the user program, whereas MOP may perform verification in a separate process, but

Dimoulas et al. [26], Disney et al. [31], and our own λπ
cs framework each address this divergence.

The third primary difference between standard contract verification and MOP is that MOP al-

lows programmers to define violation handlers that may perform additional operations (such as

correcting the issue) instead of raising errors. Since we treat contracts as black-box constructs, it

is conceivable that we may construct additional contract combinators that perform these error-cor-

recting computations instead of raising violations, e.g.:

pred/handle := λ pred handler. λ x b. if pred x then x else handler x b

Experimenting with these extended combinator forms to determine how much MOP behavior we

can replicate in our λπ
cs framework remains as future work.

136

C H A P T E R 9

Summary & Future Work

Over the course of this dissertation, we have introduced and explored runtime verification as pat-

terns of communication, starting with contract verification and growing our λπ
cs framework to

encompass generic runtime verification results. We have covered multiple aspect of runtime veri-

fication using λπ
cs and our communication-centric account of verification, including exploring the

fundamental nature of contract verification and resolving the existing “one-size-fits-none” problem

often found in modern contract verification systems; ensuring global properties about data struc-

tures; verifying that programs adhere to behavioral specification (e.g., ensuring an iterator has a

value before retrieving it); and even using our system for general function profiling.

Moreover, we have not exhaustively examined the possible strategies and meta-strategies in our

newly-exposed design space—we are still far from taming the contract verification zoo. Even this

early exploration, however, has resulted in multiple insights into the nature of runtime verification

and the role it plays in programming, allowing us a natural view into verification through the lens

of decoupled evaluation and flexible enforcement.

Ultimately, this multi-strategy, multi-process λπ
cs framework supports my thesis:

Runtime verification systems may be expressed as a collection of separate, concurrent

processes that interact with the user program, and variations on verification systems

may be encoded as variations on patterns of communication to provide programmers

with general, practical runtime verification tools.

In addition to presenting a full account of the underlying mechanisms that drive contract enforce-

ment in its myriad flavor, describing myriad verification strategies and meta-strategies in a single

calculus, we have also provided proofs of embedding correctness and type safety; explored con-

tracts and their interactions with session-style algebraic effects, using meta-strategies to account

for contract-effect interactions; and outlined an implementation of our approach in Clojure. Our
137

appendices also include a Haskell implementation of our calculus and a variant of our λπ
cs calculus

that elides force invocations on contract results.

Contracts and Effects. When we initially embarked upon this research, the goal was to quan-

tify contract verification and its interaction with other effects. As Findler [34] observed in 2013,

contracts with other effects provide programmers with immense utility for runtime inspection and

verification. While we do not give a formal account of such effect interactions in this work, we

lay the framework for understanding contracts as interactions with the main program in much

the same way as one can view a reference cell, a tracing mechanism, or an error-reporting sys-

tem as a separate entity that interacts with the underlying program. Indeed, in the time that we

performed this research, researchers around the world began to account for other effects as such

interactions [56, 61, 82] (including our own work, presented by Kiselyov et al. [60]), culminating in

Orchard and Yoshida [70] demonstrating the clear connection between sessions and effects.

Thus, in some roundabout way, we have arrived where we intended all those years ago: we now

have a reasoned, canonical mechanism to view contracts as additional, interacting processes just

as other effects, and any formal treatment of effects in this way is amenable to supporting the

framework presented here.

Future Works. The scope of this work is large enough that it may never be truly complete. Much

of the strategy and meta-strategy design space is still unmapped, and one could wander it for

years to come. Our implementation, too, could use improvements: a truly invisible chaperone-style

system that eschews the need for extract would bring Pisces to every programmer, allowing them

to precisely design and use our contract system in a modern language. Finally, the space for

meta-theoretical contributions here is far from exhausted: proofs of complete blame, further correct

strategy embeddings, and embedding λπ
cs into effect-sensitive calculi are all future possibilities, with

their own challenges and insights. Finally, another major potential for future work involves encoding

our λπ
cs system in a call-by-push-value calculus, giving a detailed treatment of each step of contract

evaluation. In addition to providing a fine-grained behavioral account, this would also pave the

way for adding such a framework to, e.g., the Frank programming language [64], which utilizes a

call-by-push-value core calculus.

All told, there is still a life’s work to be done for runtime verification metatheory.

138

Bibliography

[1] Harold Abelson and Gerald Jay Sussman. Structure and Interpretation of Computer Programs

- 2nd Edition. The MIT Press, 1996. ISBN 0262510871.

[2] Amal Ahmed, Robert Bruce Findler, Jeremy G. Siek, and Philip Wadler. Blame for all. In

Proceedings of the 38th Annual Symposium on Principles of Programming Languages, POPL

’11. ACM, 2011.

[3] Amal Ahmed, Dustin Jamner, Jeremy G. Siek, and Philip Wadler. Theorems for free for free:

Parametricity, with and without types. In Proceedings of the 22th International Conference

on Functional Programming, ICFP ’17, 2017.

[4] Chris Allan, Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren, Sascha Kuzins,

Ondřej Lhoták, Oege de Moor, Damien Sereni, Ganesh Sittampalam, and Julian Tibble.

Adding trace matching with free variables to aspectj. In Proceedings of the 20th Annual

ACM SIGPLAN Conference on Object-oriented Programming, Systems, Languages, and Ap-

plications, OOPSLA ’05, pages 345–364, New York, NY, USA, 2005. ACM.

[5] A. L. Ambler, D. I. Good, J. C. Browne, W. F. Burger, R. M. Choen, C. G. Hoch, and R. E.

Wells. Gypsy: a language for specification and implementation of verifiable programs. SIG-

PLAN, pages 1–10, 1977. URL http://doi.acm.org/10.1145/800022.808306. Proceedings

of the ACM Conference on Language Design for Reliable Software.

[6] Zena M. Ariola, John Maraist, Martin Odersky, Matthias Felleisen, and Philip Wadler. A

call-by-need lambda calculus. In Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages, POPL ’95, New York, NY, USA, 1995. ACM.

[7] Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The spec# programming system: An

overview. In Proceedings of the 2004 International Conference on Construction and Analysis

of Safe, Secure, and Interoperable Smart Devices, CASSIS ’04. Springer-Verlag, 2005.

[8] Howard Barringer, Bernd Finkbeiner, Henny Sipma, and Yuri Gurevich. Runtime Verification

(RV ’05). Elsevier, 2005, 2005. ENTCS 144.

[9] Howard Barringer, David Rydeheard, and Klaus Havelund. Rule systems for run-time moni-

toring: From eagle to ruler. In Proceedings of the 7th International Conference on Runtime

Verification, RV’07, pages 111–125, Berlin, Heidelberg, 2007. Springer-Verlag.

[10] Andrej Bauer and Matija Pretnar. Programming with algebraic effects and handlers.

arXiv:1203.1539 [cs.PL], 2012.

139

http://doi.acm.org/10.1145/800022.808306

[11] Matthias Blume and David McAllester. A sound (and complete) model of contracts. In

Proceedings of the 9th International Conference on Functional Programming, ICFP ’04. ACM,

2004.

[12] Robert Cartwright and Matthias Felleisen. Extensible denotational language specifications.

In Proceedings of the International Conference on Theoretical Aspects of Computer Software,

TACS ’94, London, UK, UK, 1994. Springer-Verlag.

[13] Feng Chen and Grigore Roşu. Mop: An efficient and generic runtime verification framework.

In Proceedings of the 22Nd Annual Conference on Object-oriented Programming Systems and

Applications, OOPSLA ’07. ACM, 2007.

[14] Feng Chen and Grigore Rou. Towards monitoring-oriented programming: A paradigm com-

bining specification and implementation. In Proceedings of the 3rd Run-time Verification, RV

’03, pages 108 – 127, 2003.

[15] Olaf Chitil. Practical typed lazy contracts. In Proceedings of the 17th International Conference

on Functional Programming, ICFP ’12. ACM, 2012.

[16] Olaf Chitil and Frank Huch. A pattern logic for prompt lazy assertions in haskell. In Symposium

on Implementation and Application of Functional Languages, IFL ’06. Springer, 2006.

[17] Olaf Chitil, Dan McNeill, and Colin Runciman. Lazy assertions. In Symposium on Implemen-

tation and Application of Functional Languages, IFL ’03. Springer-Verlag, 2003.

[18] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction

to Algorithms, Second Edition. The MIT Press, 2001. ISBN 0262032937.

[19] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction

to Algorithms, 3rd Edition (MIT Press). The MIT Press, 2009. ISBN 0262033844.

[20] George F. Coulouris. Distributed Systems. Pearson Education, 2011. ISBN 0273760599.

[21] Marcelo d’Amorim and Klaus Havelund. Event-based runtime verification of java programs.

SIGSOFT Softw. Eng. Notes, 30(4):1–7, May 2005. ISSN 0163-5948.

[22] Markus Degen, Peter Thiemann, and Stefan Wehr. True Lies: lazy contracts for lazy languages

(faithfulness is better than laziness). In Arbeitstagung Programmiersprachen (ATPS), ATPS

’09. Springer, 2009.

[23] Markus Degen, Peter Thiemann, and Stefan Wehr. Eager and delayed contract monitoring for

call-by-value and call-by-name evaluation. The Journal of Logic and Algebraic Programming,

79, 2010.

140

[24] Markus Degen, Peter Thiemann, and Stefan Wehr. The interaction of contracts and laziness.

In Proceedings of the 2012 Workshop on Partial Evaluation and Program Manipulation, PEPM

’12. ACM, 2012.

[25] Christos Dimoulas and Matthias Felleisen. On contract satisfaction in a higher-order world.

ACM Transactions on Programming Languages and Systems, 33(5), November 2011. ISSN

0164-0925.

[26] Christos Dimoulas, Riccardo Pucella, and Matthias Felleisen. Future contracts. In Proceedings

of the 11th Conference on Principles and Practice of Declarative Programming, PPDP ’09.

ACM, 2009.

[27] Christos Dimoulas, Robert Bruce Findler, Cormac Flanagan, and Matthias Felleisen. Correct

blame for contracts: No more scapegoating. In Proceedings of the 38th Annual Symposium on

Principles of Programming Languages, POPL ’11. ACM, 2011.

[28] Christos Dimoulas, Sam Tobin-Hochstadt, and Matthias Felleisen. Complete monitors for

behavioral contracts. In European Symposium on Programming, ESOP ’12. Springer-Verlag,

2012.

[29] Christos Dimoulas, Robert Bruce Findler, and Matthias Felleisen. Option contracts. In Proceed-

ings of the 2013 International Conference on Object Oriented Programming Systems Languages

& Applications, OOPSLA ’13. ACM, 2013.

[30] Christos Dimoulas, Max S. New, Robert Bruce Findler, and Matthias Felleisen. Oh lord, please

don’t let contracts be misunderstood (functional pearl). In Proceedings of the 2st International

Conference on Functional Programming, ICFP ’16, 2016.

[31] Tim Disney, Cormac Flanagan, and Jay McCarthy. Temporal higher-order contracts. In

Proceedings of the 16th International Conference on Functional Programming, ICFP ’11. ACM,

2011.

[32] Paul Erdős. On pseudoprimes and carmichael numbers. In Publicationes Mathematicae Debre-

cen. Institute of Mathematics, University of Debrecen, 1956.

[33] Funda Ergün, Sampath Kannan, S. Ravi Kumar, Ronitt Rubinfeld, and Mahesh Viswanathan.

Spot-checkers. In Proceedings of the 13th Annual ACM Symposium on Theory of Computing,

STOC ’98. ACM, 1998.

[34] Robert Bruce Findler. Behavioral software contracts. In Proceedings of the 19th International

Conference on Functional Programming, ICFP ’14. ACM, 2014.

141

[35] Robert Bruce Findler and Matthias Blume. Contracts as pairs of projections. In Proceed-

ings of the 8th International Conference on Functional and Logic Programming, FLOPS ’06.

Springer-Verlag, 2006.

[36] Robert Bruce Findler and Matthias Felleisen. Contracts for higher-order functions. In Pro-

ceedings of the 7th International Conference on Functional Programming, ICFP ’02. ACM,

2002.

[37] Robert Bruce Findler, Shu-Yu Guo, and Anne Rogers. Lazy contract checking for immutable

data structures. In Implementation and Application of Functional Languages. Springer-Verlag,

2008. ISBN 978-3-540-85372-5.

[38] Cormac Flanagan. Hybrid type checking. In Conference Record of the 33rd Symposium on

Principles of Programming Languages, POPL ’06. ACM, 2006.

[39] Matthew Flatt and PLT. Reference: Racket. Technical Report PLT-TR-2010-1, PLT Inc.,

2010. http://racket-lang.org/tr1/.

[40] Tim Freeman. Refinement Types for ML. PhD thesis, Carnegie Mellon University, 1994.

[41] Daniel Friedman and David Wise. The impact of applicative programming on multiprocessing.

Technical Report 52, Indiana University, Computer Science Department, 1976.

[42] Simon F. Goldsmith, Robert O’Callahan, and Alex Aiken. Relational queries over program

traces. In Proceedings of the 20th Annual ACM SIGPLAN Conference on Object-oriented

Programming, Systems, Languages, and Applications, OOPSLA ’05, pages 385–402, New York,

NY, USA, 2005. ACM.

[43] Michael Greenberg. Space-efficient manifest contracts. In Proceedings of the 42nd Symposium

on Principles of Programming Languages, POPL ’15. ACM, 2015.

[44] Michael Greenberg, Benjamin C. Pierce, and Stephanie Weirich. Contracts made manifest.

In Proceedings of the 37th Symposium on Principles of Programming Languages, POPL ’10.

ACM, 2010.

[45] Arjun Guha, Jacob Matthews, Robert Bruce Findler, and Shriram Krishnamurthi. Relation-

ally-parametric polymorphic contracts. In Proceedings of the 2007 Symposium on Dynamic

languages, DLS ’07. ACM, 2007.

[46] Klaus Havelund and Grigore Rosu. Monitoring java programs with java pathexplorer. Technical

report, NASA Ames Research Center, 2001.

[47] Klaus Havelund and Grigore Rosu. Runtime Verification (RV ’01, RV ’02, RV ’04). Elsevier,

2001, 2002, 2004, 2001,2002,2004. ENTCS 55, 70, 113.

142

http://racket-lang.org/tr1/

[48] M. P. Herlihy and J. M. Wing. Axioms for concurrent objects. In Proceedings of the 14th ACM

SIGACT-SIGPLAN Symposium on Principles of Programming Languages, POPL ’87, pages

13–26, New York, NY, USA, 1987. ACM.

[49] Rich Hickey. The Clojure programming language. In Proceedings of the 2008 Symposium on

Dynamic Languages, DLS ’08, New York, NY, USA, 2008. ACM.

[50] Rich Hickey. Clojure core.spec Documentation. https://clojure.org/guides/spec, 2018.

[Online; accessed 18-February-2018].

[51] Daniel Higginbotham. Clojure for the Brave and True: Learn the Ultimate Language and

Become a Better Programmer. No Starch Press, 2015.

[52] Ralf Hinze, Johan Jeuring, and Andres Löh. Typed contracts for functional programming. In

Proceedings of the 8th International Conference on Functional and Logic Programming, FLOPS

’06. Springer-Verlag, 2006.

[53] P. Z. Ingerman. Thunks: A way of compiling procedure statements with some comments on

procedure declarations. Communications of the ACM, 4(1), January 1961. ISSN 0001-0782.

[54] Omar Javed, Yudi Zheng, Andrea Rosà, Haiyang Sun, and Walter Binder. Extended code

coverage for aspectj-based runtime verification tools. In Yliès Falcone and César Sánchez,

editors, Runtime Verification: 16th International Conference, RV ’16. Springer, 2016.

[55] A. Jeffrey. Semantics for core Concurrent ML using computation types. In Higher Order

Operational Techniques in Semantics. Cambridge University Press, 1998.

[56] Ohad Kammar, Sam Lindley, and Nicolas Oury. Handlers in action. In ICFP, 2013.

[57] Matthias Keil and Peter Thiemann. Blame assignment for higher-order contracts with inter-

section and union. In Proceedings of the 20th International Conference on Functional Program-

ming, ICFP ’15. ACM, 2015.

[58] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes, Jean-Marc

Loingtier, and John Irwin. Aspect-oriented programming. In Mehmet Akşit and Satoshi Mat-

suoka, editors, Proceedings of the 11th European Conference on Object-Oriented Programming,

ECOOP ’97, pages 220–242, Berlin, Heidelberg, 1997. Springer Berlin Heidelberg.

[59] MoonZoo Kim, Mahesh Viswanathan, Sampath Kannan, Insup Lee, and Oleg Sokolsky. Java-

mac: A run-time assurance approach for java programs. Formal Methods in System Design,

24(2):129–155, Mar 2004. ISSN 1572-8102. doi: 10.1023/B:FORM.0000017719.43755.7c. URL

https://doi.org/10.1023/B:FORM.0000017719.43755.7c.

143

https://clojure.org/guides/spec
https://doi.org/10.1023/B:FORM.0000017719.43755.7c

[60] Oleg Kiselyov, Amr Sabry, and Cameron Swords. Extensible effects: An alternative to monad

transformers. In Haskell Symposium, 2013.

[61] Daan Leijen. Koka: A language with row-polymorphic effect inference. In 1st Workshop on

Higher-Order Programming with Effects (HOPE 2012), September 2012.

[62] Tim Lindholm. The Java Virtual Machine Specification. Addison-Wesley, Upper Saddle River,

NJ, 2014. ISBN 978-0133905908.

[63] Michael Martin, Benjamin Livshits, and Monica S. Lam. Finding application errors and secu-

rity flaws using pql: A program query language. In Proceedings of the 20th Annual ACM SIG-

PLAN Conference on Object-oriented Programming, Systems, Languages, and Applications,

OOPSLA ’05, pages 365–383, New York, NY, USA, 2005. ACM.

[64] Conor McBride. The Frank manual. https://personal.cis.strath.ac.uk/conor.

mcbride/pub/Frank/, 2012.

[65] John McCarthy. Recursive functions of symbolic expressions and their computation by ma-

chine, part i. Communications of the ACM, 1960.

[66] Bertrand Meyer. Eiffel: the language. Prentice-Hall, Inc., 1992. ISBN 0-13-247925-7.

[67] Robin Milner. The definition of standard ML: revised. MIT press, 1997.

[68] Scott Moore, Christos Dimoulas, Robert Bruce Findler, Matthew Flatt, and Stephen Chong.

Extensible access control with authorization contracts. In Proceedings of the 2016 Interna-

tional Conference on Object-Oriented Programming, Systems, Languages, and Applications,

OOPSLA ’16. ACM, 2016.

[69] Phúc C. Nguyen, Sam Tobin-Hochstadt, and David Van Horn. Soft contract verification. In

Proceedings of the 19th International Conference on Functional Programming, ICFP ’14. ACM,

2014.

[70] Dominic Orchard and Nobuko Yoshida. Effects as sessions, sessions as effects. In Proceedings of

the 43th Annual Symposium on Principles of Programming Languages, POPL ’16, New York,

NY, USA, 2016. ACM.

[71] Xinming Ou, Gang Tan, Yitzhak Mandelbaum, and David Walker. Dynamic typing with de-

pendent types. In Jean-Jacques Levy, Ernst W. Mayr, and John C. Mitchell, editors, Exploring

New Frontiers of Theoretical Informatics, pages 437–450, Boston, MA, 2004. Springer US.

[72] Zachary Owens. Contract monitoring as an effect. In Proceedings of the 1st ACM SIGPLAN

Workshop on Higher-Order Programming with Effects, HOPE ’12. ACM, 2012.

[73] Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.

144

https://personal.cis.strath.ac.uk/conor.mcbride/pub/Frank/
https://personal.cis.strath.ac.uk/conor.mcbride/pub/Frank/

[74] John H. Reppy. Concurrent ML: Design, application and semantics. In Functional Pro-

gramming, Concurrency, Simulation and Automated Reasoning: International Lecture Series

1991-1992, McMaster University, Hamilton, Ontario, Canada. Springer-Verlag, 1993. ISBN

3-540-56883-2.

[75] John H. Reppy. Concurrent Programming in ML. Cambridge University Press, 1999. ISBN

0-521-48089-2.

[76] Taro Sekiyama, Yuki Nishida, and Atsushi Igarashi. Manifest contracts for datatypes. In

Proceedings of the 42Nd Symposium on Principles of Programming Languages, POPL ’15.

ACM, 2015.

[77] Avraham Shinnar. Safe and effective contracts. Technical report, Harvard University, 2011.

[78] Oleg Sokolsky, Klaus, and Mahesh Viswanathan. Runtime Verification (RV ’03). Elsevier,

2003, 2005. ENTCS 89.

[79] T. Stephen Strickland, Sam Tobin-Hochstadt, Robert Bruce Findler, and Matthew Flatt.

Chaperones and impersonators: Run-time support for reasonable interposition. In Proceedings

of the ACM International Conference on Object Oriented Programming Systems Languages

and Applications, OOPSLA ’12. ACM, 2012.

[80] Cameron Swords, Amr Sabry, and Sam Tobin-Hochstadt. Expressing contract monitors as

patterns of communication. In Proceedings of the 20th International Conference on Functional

Programming, ICFP ’15. ACM, 2015.

[81] Sam Tobin-Hochstadt and Matthias Felleisen. Logical types for untyped languages. In Pro-

ceedings of the 15th International Conference on Functional Programming, ICFP ’10. ACM,

2010.

[82] Sjoerd Visscher. Control.effects. http://github.com/sjoerdvisscher/effects, 2012.

[83] Michael M. Vitousek, Cameron Swords, and Jeremy G. Siek. Big types in little runtime: Open

world soundness and collaborative blame for gradual type system. In POPL, 2017.

[84] Philip Wadler and Robert Bruce Findler. Well-typed programs can’t be blamed. In Proceed-

ings of the 18th European Symposium on Programming Languages and Systems, ESOP ’09.

Springer-Verlag, 2009.

[85] Andrew K. Wright and Matthias Felleisen. A syntactic approach to type soundness. Informa-

tion and Computation, 115(1):38–94, November 1994. ISSN 0890-5401.

[86] Dana N. Xu, Simon Peyton Jones, and Koen Claessen. Static contract checking for haskell. In

Proceedings of the 36th Annual Symposium on Principles of Programming Languages, POPL

145

http://github.com/sjoerdvisscher/effects

’09. ACM, 2009.

146

C H A P T E R A

Embedding Findler and Felleisen [36] into λπ
cs

We set out to provide a unifying framework for contract semantics, a sort of “assembly language”

target for recreating, understanding, and comparing contract strategies. To demonstrate our ac-

complishment, we now prove that eager in λπ
cs simulates the runtime verification of λCON from

Findler and Felleisen [36] (given in Figure A.1), up to alpha-equivalence and unit elimination.

The language give in Figure A.1 elides a handful of forms from the version presented in λCON ,

including list and fixpoint operations (since neither are relevant to the discussion) and, more im-

portant, their outer val rec form, defined as (with appropriate evaluation contexts to match, which

Findler and Felleisen, 2002

c = λ x. c | c c | x | if c then c else c | true | false | n | c op c
| c 7→ c | contract(c) | blame(c) | cc,x,x

C = □ | C c | V C | C op c | V op C | if C then c else c
| C 7→ c | contract(C) | blame(C) | cC,x,x | CV,x,x

V = λ x. c | n | true | false | V 7→ V | contract(V) | V V 7→V,x,x

C[V
contract(V2),p,n
1] −→ C[if V2 V1 then V1 else blame(p)]

C[(V V3 7→V3,p,n
1) V2] −→ C[(V1 V V3,n,p

2)V4,p,n]

C[e] −→ C[e′] (if e⇝ e′)

λ x. c V ⇝ c[x/V]

if true then c1 else c2 ⇝ c1

if false then c1 else c2 ⇝ c2

⌜n1⌝+ ⌜n2⌝ ⇝ ⌜n1 + n2⌝
⌜n1⌝ ≤ ⌜n2⌝ ⇝ true (if n1 ≤ n2)

⌜n1⌝ ≤ ⌜n2⌝ ⇝ false (if n1 ̸≤ n2)...

Figure A.1. A subset of the λCON language from Findler and Felleisen [36]. We have
renamed their E to C and e to c to avoid ambiguity.

147

Embedding Translation
c ⇝ (K, P, e)

true ⇝ (∅, ∅, true) false ⇝ (∅, ∅, false) n ⇝ (∅, ∅, n)

x ⇝ (∅, ∅, x)

c →→e e

λ x. c ⇝ (∅, ∅, λ x. e)

c1 ∈ V c1 →→v e1 c2 ⇝ (K, P, e2)

c1 c2 ⇝ (K, P, e1 e2)

c1 /∈ V c1 ⇝ (K, P, e1) c2 →→e e2
c1 c2 ⇝ (K, P, e1 e2)

c1 ∈ V c1 →→v e1 c2 ⇝ (K, P, e2)

c1 op c2 ⇝ (K, P, e1 op e2)

c1 /∈ V c1 ⇝ (K, P, e1) c2 →→e e2
c1 op c2 ⇝ (K, P, e1 op e2)

c1 ⇝ (K, P, e1) c2 →→e e2 c3 →→e e3
if◦ c1 then c2 else c3 ⇝ (K, P, if e1 then e2 else e3)

c1 ⇝ (K, P, e1) c2 →→e e2 c3 →→e e3
fresh ι fresh π p = ⟨write ι (catch inl (inr (if e1 then e2 else e3)))⟩π

if• c1 then c2 else c3 ⇝ ({ι} ⊎K, {p} ⊎ P, conres (read ι))

c1 ∈ V c1 →→v e1 c2 ⇝ (K, P, e2) fresh f fresh b fresh x

(c1 7→ c2) ⇝ (K, P, λ f b. λ x. mon e2 eager (f (mon e1 eager x (invert b))) b)

c1 /∈ V c1 ⇝ (K, P, e1) c2 →→e e2 fresh f fresh b fresh x

(c1 7→ c2) ⇝ (K, P, λ f b. λ x. mon e2 eager (f (mon e1 eager x (invert b))) b)

c ⇝ (K, P, e) fresh x fresh b

contract(c) ⇝ (K, P, λ x b. if e x then x else raise b)

c ⇝ (K, P, e) B ≈ e

blame(c) ⇝ (K, P, raise B)

c1 /∈ V c2 /∈ V c1 →→e e1 c2 ⇝ (K, P, e) B ≈ (p, n)

cc2,p,n1 ⇝ (K, P, mon e2 eager e1 B)

c1 /∈ V c2 ∈ V c1 ⇝ (K, P, e1) c2 →→v e2 B ≈ (p, n)
fresh ι fresh π p = ⟨write ι (catch inl (inr (e2 (read ι) B)))⟩π

cc2,p,n1 ⇝ ({ι} ⊎K, {p} ⊎ P, seq (write ι e1) (conres (read ι)))

c1 ∈ V c2 ∈ V c1 →→v e1 contract(c2) →→v e2 B ≈ (p, n)
fresh ι fresh π p = ⟨write ι (catch inl (inr (e2 e1 B)))⟩π

c
contract(c2),p,n
1 ⇝ ({ι}, {p}, conres (read ι))

c1 ∈ V c2 ∈ V c3 ∈ V c1 →→v e1 c2 →→v e2 c3 →→v e3
fresh ι fresh π fresh x B ≈ (p, n)

cc2 7→c3,p,n
1 ⇝ (∅, ∅, λ x. mon c3 eager (e1 (mon c2 eager x (invert B))) B)

Figure A.2. Embedding procedure for λCON into λπ
cs.

148

Embedding Translations
c →→e e

true →→e true false →→e false x →→e x n →→e n

c →→e e

λ x. c →→e λ x. e

c1 →→e e1 c2 →→e e2
c1 c2 →→e e1 e2

c1 →→e e1 c2 →→e e2
c1 op c2 →→e e1 op e2

c1 →→e e1 c2 →→e e2 c3 →→e e3
if◦ c1 then c2 else c3 →→e if e1 then e2 else e3

c →→e e fresh x fresh b

contract(c) →→e λ x b. if e x then x else raise b

c →→e e

blame(c) →→e raise e

c1 →→e e1 c2 →→e e2 B ≈ (p, n)

cc2,p,n1 →→e mon e2 eager e1 B

V →→v v

true →→v true false →→v false n →→v n

c →→e e

λ x. c →→v λ x. e

c →→v e fresh x fresh b

contract(e) →→v λ x b. if e x then x else raise b

c →→v e

blame(c) →→v raise e

c1 →→v e1 c2 →→v e2 c3 →→v e3 B ≈ (p, n) fresh x

cc2 7→c3,p,n
1 →→v λ x. mon c3 eager (e1 (mon c2 eager x (invert B))) B

Figure A.3. Sub-translation relations →→e and →→v for embedding λCON into λπ
cs.

evaluate the bindings before the body):

p = d · · · c
d = val rec x : c = c

Here, each binding has two values associated as x : V1 = V2, where the first represents a contract

on the second. Findler and Felleisen install these contracts on each occurrence of x in the program

via their I operator (given in Figure 14 of their technical report) such that, if the program binds

x as val rec x : e1 = e2, then each usage site of x is rewritten as xe1,x,n to enforce the contract e1.

Findler and Felleisen provide this machinery to more closely match the module interaction system

and blame coordination in Racket, which is unnecessary for demonstrating that their individual

monitors proceed via eager verification. As such, our simulation assumes that each clause in the

outer val rec form is completely evaluated and substituted in, removing the need for the “ rec−→”

reduction along with syntax forms p and d and contexts P .
149

Our simulation begins with three translation relations from λCON to λπ
cs, defined as “⇝”, “→→e”, and

“→→v”, defined in Figure A.2 and Figure A.3. The ⇝ operator relates a term c with an expression

e, a set of new channels K, and a set of process P , where the translated expression will fill process

π0, which →→e and →→v translate terms and values in λCON into equivalent term-level expressions in

λπ
cs.

The intuition is that ⇝ acts as the main translator, focusing in on the next redex of the program,

while →→e evaluates each unevaluated portion of the program (i.e., c occurrences in context C) and

→→v translates each evaluated portion of the term (i.e., V occurrences in context C). Next, we define

a series of lemmas and finally prove our simulation result:

Lemma A.1 (Translating Values Yield No Channels or Processes). If c ∈ V and c ⇝ (K, P, e),

then e ∈ v, K = ∅, and P = ∅.

Proof (Sketch). This proof establishes that we relate values in λCON to values in λπ
cs.

Proof proceeds by induction on c and our constraint that it is a value, then inversion on the

translation relation. □

Lemma A.2 (Embedding Translation Focuses on Redex). If c = C[c0] such that c0 is the next redex,

then c ⇝ (K, P, e) has some derivation tree as

D
c ⇝ (K, P, e)

then D contains c0 ⇝ (K0, P0, e0).

Proof (Sketch). Findler and Felleisen [36] prove unique decomposition for c terms, and proof

proceeds by induction on the structure of C and inversion on D. □

Lemma A.3 (Embedding Reduction). If c ∈ λCON such that · ⊢ c : t (that is, c is well-typed),

c −→ c′, and c ⇝ (K, P, e) and c′ ⇝ (K ′, P ′, e′), then K, {π0}, {⟨e⟩π0}+P ⇒∗ K ′′, {π0}, P ′′

such that

K ′′, {π0}, P ′′ =α,unit K ′, {π0}, {⟨e′⟩π0}+ P ′.

Proof. This proof establishes that each evaluation step in λCON has a corresponding set of eval-

uation steps in λπ
cs. We make the following simplifying assumptions:

• We appeal to alpha equivalence for our reduction in order to avoid the need to explicitly track

and name channels and process identifiers in terms of their creation, so that we do not need
150

to maintain the exact channel name or process identifier between steps, only that we use each

name alpha-equivalently.

• We disregard processes of the form ⟨unit⟩π in our embedding; these processes are the product

of contract verification, and ensuring each exists would require keeping track of each contract

checked up until the current point in the derivation.

Next, we note that the termination set will always be precisely {π0} since neither our translation

relation or eager monitors will introduce a spawnf term, and thus we do not need to consider the

termination set for the proof.

To differentiate between contract-checking terms and other conditional branching operations, we

“recolor” the if expressions in c to indicate their origin: we mark if expressions that originate in

the program (i.e., c) with ◦, and we modify →λCON to color contract-introduced if statements as:

D[V contract(V2),p,n]
flat−→ D[if• V2 (V) then V else blame(p)]

Evaluation for both if◦ c then c else c and if• c then c else c otherwise proceed as if c then c else c.

We perform induction on “c −→ c′′. Except for contract enforcement operations, our translation

directly preserves the source language syntax, and thus we only present the contract-related cases

in detail:

Case:. C[V
contract(V2),p,n
1] −→ C[if• V2 V1 then V1 else blame(p)]

Using ⇝, we have:

C[V
contract(V2),p,n
1] ⇝ (P, K, e)

C[if• V2 V1 then V1 else blame(p)] ⇝ (P ′, K ′, e′)

Since C is static, the term inside of C is the next redex and thus is translated by →→v and →→e,
whereas we translate V

contract(V2),p,n
1 by ⇝ (via Lemma A.2). Furthermore,

V1 ∈ V V2 ∈ V V2 →→v e2

B ≈ (p, n) V1 →→v e1 contract(V2) →→v λ x b. if e2 x then x else raise b

fresh ι fresh π p = ⟨write ι (catch inl (inr (V2 V1 B)))⟩π

V
contract(V2),p,n
1 ⇝ ({ι}, {p}, conres (read ι))

and
c1 ⇝ (K, P, e1) c2 →→e e2 c3 →→e e3

fresh ι fresh π′ p′ = ⟨write ι (catch inl (inr (if e1 then e2 else e3)))⟩π
′

if• V2 V1 then V2 else blame(p) ⇝ ({ι′} ⊎K, {p′} ⊎ P, conres (read ι))

151

Thus P = P0 ⊎ {p} and K = K0 ⊎ {ι} (taking ι = ι′ and π = π′). Then it is sufficient to show that

K ⊎ {ι}, {π0}, P0 ⊎ {p} ⊎ ⟨E [conres (read ι)]⟩π

⇒ K ⊎ {ι}, {π0}, P0 ⊎ {p′} ⊎ ⟨E [conres (read ι)]⟩π

This follows directly because p reduces to p′ by our definition of term reduction relation “ 7−→” and

[ProcStep] in the “⇒” relation.

Case:. C[(V V3 7→V4,p,n
1) V2] −→ C[(V1 V V3,n,p

2)V4,p,n]

We use the same argument to deal with context C as in the previous case, yielding some K0 and
P0 for the reduction. Then:

V V3 7→V4,p,n
1 ∈ V V V3 7→V4,p,n

1 →→v efc V2 ⇝ (∅, ∅, e2)

V V3 7→V4,p,n
1 V2 ⇝ (∅, ∅, efc e2)

where the channel and processes in the premises are empty by Lemma A.1 and efc is the result of
the translation

V1 →→v e1 V3 →→v e3 V4 →→v e4 B ≈ (p, n) fresh x

V V3 7→V4,p,n
1 →→v λ x. mon e4 eager (e1 (mon e3 eager x (invert B))) B

The right-hand side of the reduction proceeds as:

(V1 V V3,n,p
2) /∈ V V4 ∈ V (V1 V V3,n,p

2) ⇝ (K ′, P ′, e1 e′2) V4 →→v e2 B ≈ (p, n)

fresh ι fresh π p = ⟨write ι (catch inl (inr (e4 (read ι) B)))⟩π

(V1 V V3,n,p
2)V4,p,n ⇝ ({ι} ⊎K ′, {p} ⊎ P ′, seq (write ι e1 e′2) (conres (read ι)))

where
V1 ∈ V V1 →→v e1 V V3,n,p

2 ⇝ (K ′, P ′, e′2)

(V1 V V3,n,p
2) ⇝ (K, P, e1 e′2)

The exact shape of e′2 depends upon the shape of V3. Since c is well-typed, it is either a flat or

function contract. We proceed by consider each, appealing to this series of reductions to prove

each:

Subcase: V3 = contract(V ′
3)

V3 ∈ V V3 ∈ V V3 →→v e2 contract(V3) →→v e3 B ≈ (p, n)

fresh ι fresh π p = ⟨write ι (catch inl (inr (e3 e2 B)))⟩π

V
contract(V3),p,n
3 ⇝ ({ι}, {p}, conres (read ι))

Thus it is sufficient to show

K0, P0 + ⟨E [(mon e4 eager (e1 (mon e3 eager x (invert B))) B) e2]⟩π0

⇒∗ K0 ⊎ {ι, ι′}, P0+⟨E [seq (write ι (e1 (conres (read ι′)))) (conres (read ι))]⟩π0

+⟨write ι (catch inl (inr (e4 (read ι) B)))⟩π

+⟨write ι (catch inl (inr (e3 e2 B̄)))⟩π

which follows from our reduction semantics in λπ
cs.

152

Subcase: V3 = V3i 7→ V3o

Since both V2 and V3 are values, we translate this as:

V2 ∈ V V3i ∈ V V3o ∈ V V2 →→v e2 V3i →→v e3i V3o →→v e3o

fresh ι fresh π fresh x B̄ ≈ (n, p)

V V3i 7→V3o,n,p
2 ⇝ (∅, ∅, λ x. mon e3o eager (e2 (mon e3i eager x B)) B̄)

Thus it is sufficient to show

K0, P0 + ⟨E [(mon e4 eager (e1 (mon e3 eager x (invert B))) B) e2]⟩π0

⇒∗ K0 ⊎ {ι}, P0+⟨E [seq (write ι (e1 e2v)) (conres (read ι))]⟩π0

+⟨write ι (catch inl (inr (e4 (read ι) B)))⟩π

where

e2v = λ x. mon e3o eager (e1 (mon e3i eager x B)) B̄

which follows from our reduction semantics and unit equality to account for the missing unit-value

process created by constructing the contracted function value for V2. □

Finally, we state the embedding theorem as:

Theorem A.1 (Embedding Correctness). If c ∈ λCON such that · ⊢ c : t, c −→∗ V , c ⇝ (K, P, e),

and V →→v v,

then K, {π0}, {⟨e⟩π0}+ P 7−→∗ K ′, {π0}, ⟨v⟩π0 + P ′.

Proof. First, no translation will produce an spawnf form, and thus T remains constant. Then

the proof proceeds by induction on the length of −→∗ and Lemma A.3. □

This proof demonstrates that our approach to eager monitoring faithfully recreates the original

presentation and, more generally, that defining contracts as patterns of communication maintains

previous models while exposing their internal workings at a finer granularity.

Moreover, this proof is, in a sense, straightforward: we are, in essence, doing nothing more than

piecing apart and tracking the individual evaluators that go into contract monitoring, separating the

user portions from the monitoring ones. These two approaches may appear distinct on the surface,

but they are, in actuality, closely connected. Moreover, additional simulation proofs will be more

complex, but follow this same approach: syntactic munging plus a little process management.

153

C H A P T E R B

λπ
cd: A delay-less Variant of λπ

cs

The chaperone-based λπ
cd differs from λπ

cs in its inclusion of chaperone values of the form ⟨e1⟩e2e3 ,

where e1 is the chaperoned value, e2 is the chaperone, indicating how enforcement should proceed

then the chaperoned value is required, and e3 contains blame information. After adding these

chaperones, we can remove force and delay, and thus do so. To automatically force chaperones, we

reclassify those contexts which must perform forcing as C contexts in order to force operations in,

e.g., operator position. These C contexts are a strict subset of the D contexts, and are embedded

as such.

Finally, we modify our reduction relation “→” to support evaluating a chaperone in a C context.

This reduction uses the chaperone to yield the underlying value to the program:

C[⟨e1⟩e2e3] → C[e2 e1 e3]

Now, we can define semi and prom verification in terms of such chaperones:

mon con semi exp B → let f = λ exp b.let i = chan
in seq

(spawn (write i (catch inl (inr (con (read i) b)))))

(write i exp)

(conres (read i))

in ⟨exp⟩fB

mon con prom exp B → let i = chan
in seq

(spawn (write i (catch inl (inr (con (read i) B)))))

(write i exp)

⟨exp⟩(λ _ _. conres (read i))
B

In each case, we construct the appropriate procedure for extraction and construct the appropriate

chaperone result. For example, in the semi-eager case, checking nat/c on 5 will result in a value

⟨5⟩... check nat/c ...
B that will ensure 5 is a natural number when it appears in a forcing position, i.e.,

C contexts.

154

Syntax
Exprs e := x | v | e e | if e then e else e

| e binop e | unop e | (e, e) | fst e | snd e
| case (e; x▷ e; x▷ e) | inl e | inr e
| raise e | catch e e
| spawn e | spawnf e | chane | read e | write e e
| mon e e e e

Values v := λ x. e | ι | (v, v) | inl v | inr v
| n | true | false | unit | B | s
| ⟨e⟩vv

Strategies s := eager | semi | prom | · · ·

C-Contexts C := □ | C e | if C then e else e
| C binop e | v binop C | unop C
| fst C | snd C
| case (C; x▷ e; x▷ e)
| catch C e
| read C | write C e
| mon C e e e | mon v C e e | mon v v e C

D-Contexts D := □ | C | C[D] | D e | v D | if D then e else e
| D binop e | v binop D | unop D
| (D, e) | (v,D) | fst D | snd D
| case (D; x▷ e; x▷ e) | inl D | inr D
| raise D | catch D e
| chanD | read D | write D e | write v D
| mon D e e e | mon v D e e | mon v v e D

E-Contexts E := D | D[E] | catch v E

ProcId π ∈ N
Process proc = ⟨ei⟩πi

Proc. Set P ∈ Fin(proc)

Proc. Decomp. P + ⟨e⟩π ≡ P ∪ {⟨e⟩π}

Proc. Config. K,T, P K ∈ Fin(channel names)
T ∈ Fin(process ids)

Figure B.1. Syntax definitions for λπ
cs.

155

Dynamic Semantics
e → e′

(λ x. e) v → e[v/x]
if true then e1 else e2 → e1
if false then e1 else e2 → e2
v1 binop v2 → v where δ(binop, v1, v2) = v
unop v′ → v where δ(unop, v′) = v
case (inl v; x1 ▷ e1; x2 ▷ e2) → e1[v/x1]
case (inr v; x1 ▷ e1; x2 ▷ e2) → e2[v/x2]
force (delay e) → e
force v → v where v ̸= delay e
catch v1 v2 → v2
catch v1 (raise v2) → v1 v2
C[⟨e1⟩e2e3] → C[e2 e1 e3]

e 7−→ e′

e → e′

E [e] 7−→ E [e′] E [D[raise v2]] 7−→ E [raise v2]

e1
ι
⌢
⌣ e2 with (e′1, e

′
2)

write ι v
ι
⌢
⌣ read ι with (unit, v)

e1
ι
⌢
⌣ e2 with (e′1, e

′
2)

e2
ι
⌢
⌣ e1 with (e′2, e

′
1)

K,T, P ⇒ K ′, T, P ′

e 7−→ e′

K,T, P + ⟨e⟩π ⇒ K,T, P + ⟨e′⟩π

π′ /∈ dom(P)

K,T, P + ⟨E [spawn e]⟩π ⇒ K,T, P + ⟨E [unit]⟩π + ⟨e⟩π′

π′ /∈ dom(P)

K,T, P + ⟨E [spawnf e]⟩π ⇒ K, T ∪ {π′}, P + ⟨E [unit]⟩π + ⟨e⟩π′

ι /∈ K

K,T, P + ⟨E [chan]⟩π ⇒ K ∪ {ι}, T, P + ⟨E [ι]⟩π

e1
ι
⌢
⌣ e2 with (e′1, e

′
2) ι ∈ K

K,T, P + ⟨E1[e1]⟩π1 + ⟨E2[e2]⟩π2 ⇒ K,T, P + ⟨E1[e′1]⟩π1 + ⟨E2[e′2]⟩π2

Figure B.2. Dynamic semantics for λπ
cs.

156

C H A P T E R C

The Pisces Source Code

1 (ns mcon . co r e
2 (: r e q u i r e [c l o j u r e . co r e . async : as a : r e f e r [go put !]])
3 (: r e q u i r e [c l o j u r e . t e s t . check . g e n e r a t o r s : as gen : r e f e r [sample]])
4 (: r e q u i r e [c l o j u r e . main : as m]))
5
6 ;
7 ; ; Check D e f i n i t i o n ; ;
8 ;
9

10 (d e f r e c o r d Blame [s e r v e r c l i e n t c o n t r a c t])
11
12 (de f blm (Blame . " s e r v e r " " c l i e n t " " c o n t r a c t "))
13
14 (de fn i n v e r t - blame
15 [blame]
16 (Blame . (: c l i e n t blame) (: s e r v e r blame) (: c o n t r a c t blame)))
17
18 (de fn i ndy - blame
19 [blame]
20 (Blame . (: c l i e n t blame) (: c o n t r a c t blame) (: c o n t r a c t blame)))
21
22 (d e f r e c o r d S t r a t e g y [sname imp l])
23
24 (d e f r e c o r d Meta s t r a t [sname imp l s u b s t r a t])
25
26 (de fn mon - f l a t
27 [c o n t r a c t s t r a t dterm blame]
28 (cond
29 (i n s t a n c e ? S t r a t e g y s t r a t)
30 ((: imp l s t r a t) c o n t r a c t dterm blame)
31 : e l s e (Excep t i on . (s t r " I n v a l i d s t r a t e g y : " s t r a t "\n"
32 " c o n t r a c t : " c o n t r a c t "\n"
33 " i n p u t : " dterm "\n"
34 " Blame : " blame))))
35
36 (de fn mon - meta
37 [c o n t r a c t s t r a t dterm blame]
38 (cond
39 (i n s t a n c e ? Meta s t r a t s t r a t)
40 ((: imp l s t r a t) c o n t r a c t dterm (: s u b s t r a t s t r a t) blame)
41 (i n s t a n c e ? S t r a t e g y s t r a t)
42 (mon - f l a t c o n t r a c t s t r a t dterm blame)
43 : e l s e (Excep t i on . (s t r " I n v a l i d s t r a t e g y : " s t r a t "\n"
44 " c o n t r a c t : " c o n t r a c t "\n"
45 " i n p u t : " dterm "\n"

157

46 " Blame : " blame))))
47
48 (defmacro mon
49 " Check a c o n t r a c t w i th a s p e c i f i c s t r a t e g y "
50 [c o n t r a c t s t r a t v a l u e blame]
51 ‘ (mon - meta ~ c o n t r a c t ~ s t r a t (d e l a y ~ v a l u e) ~blame))
52
53 (de fn e x t r a c t
54 [exp] (i f (o r (d e l a y ? exp) (f u t u r e ? exp)) @exp exp))
55
56 ;
57 ; ; S t r a t e g y D e f i n i t i o n s ; ;
58 ;
59
60 ; Sk ip V e r i f i c a t i o n
61 (de fn s k i p - check
62 [c o n t r a c t dterm blame]
63 (e x t r a c t dterm))
64
65 (de f s k i p (S t r a t e g y . " s k i p " s k i p - check))
66
67 ; Eager V e r i f i c a t i o n
68 (de fn eage r - check
69 [c o n t r a c t dterm blame]
70 (c o n t r a c t (e x t r a c t dterm) blame))
71
72 (de f eage r (S t r a t e g y . " eage r " eage r - check))
73
74 ; Semi V e r i f i c a t i o n
75 (de fn semi - check
76 [c o n t r a c t dterm blame]
77 (d e l a y (c o n t r a c t (e x t r a c t dterm) blame)))
78
79 (de f semi (S t r a t e g y . " semi - eage r " semi - check))
80
81 ; Prom V e r i f i c a t i o n
82 (de fn f u t u r e - check
83 [c o n t r a c t dterm blame]
84 (f u t u r e (c o n t r a c t (e x t r a c t dterm) blame)))
85
86 (de f f u t u r (S t r a t e g y . " f u t u r e " f u t u r e - check))
87
88 ; Conc V e r i f i c a t i o n
89 (de fn conc - check
90 [c o n t r a c t dterm blame]
91 (do (a/go (c o n t r a c t (e x t r a c t dterm) blame)) (e x t r a c t dterm)))
92
93 (de f conc (S t r a t e g y . " conc " conc - check))
94
95 ; Spot - Check ing V e r i f i c a t i o n (f u n c t i o n s on l y)
96 (de fn sp o t - check
97 [g e n e r a t o r]
98 (fn [c o n t r a c t dterm blame]
99 (l e t [f (e x t r a c t dterm)]

100 (i f (not (fn ? f))
101 (throw (Excep t i on . (s t r f " i s not a f u n c t i o n "))))

158

102 (l e t [c (c o n t r a c t f blame)]
103 (d o a l l (map (fn [x] (c x)) (gen/ sample g e n e r a t o r 2 0)))
104 f))))
105
106 (de fn sp o t
107 " spo t - checke r s t r a t e g y "
108 [g]
109 (S t r a t e g y . " spo t " (sp o t - check g)))
110
111 ;
112 ; ; Me ta s t r a t egy D e f i n i t i o n s ; ;
113 ;
114
115 ; With - Operator V e r i f i c a t i o n
116 (de fn with - check
117 [fun]
118 (fn [c o n t r a c t dterm sub - s t r a t blame]
119 (l e t [v a l (e x t r a c t dterm)
120 r e s (mon c o n t r a c t sub - s t r a t v a l blame)]
121 (do (fun (mon c o n t r a c t sub - s t r a t v a l (i ndy - blame blame)))
122 r e s))))
123
124 (de fn with
125 " wi th meta - s t r a t e g y , e x p e c t s a f u n c t i o n and a s t r a t e g y "
126 [fun s t r a t]
127 (Meta s t r a t . " w i th " (with - check fun) s t r a t))
128
129 ; Random V e r i f i c a t i o n
130 (de fn random - check
131 [r a t e]
132 (fn [c o n t r a c t dterm sub - s t r a t blame]
133 (i f (< (rand) r a t e)
134 (mon c o n t r a c t sub - s t r a t (e x t r a c t dterm) blame)
135 (e x t r a c t dterm))))
136
137 (de fn random
138 " randomize r meta - s t r a t e g y , e x c e p t s a mon i to r r a t e and a s t r a t e g y "
139 [r a t e s t r a t]
140 (Meta s t r a t . " rand " (random - check r a t e) s t r a t))
141
142 ; Communicating V e r i f i c a t i o n
143 (de fn comm - check
144 [channe l fun]
145 (fn [c o n t r a c t dterm sub - s t r a t blame]
146 (l e t [v a l (e x t r a c t dterm)
147 r e s (mon c o n t r a c t sub - s t r a t v a l blame)]
148 (do (a/ put ! channe l (fun (mon c o n t r a c t sub - s t r a t v a l (i ndy - blame blame))))
149 r e s))))
150
151 (de fn comm
152 " communicat ion meta - s t r a t e g y , e x p e c t s a channe l and a s t r a t e g y "
153 [chan fun s t r a t]
154 (Meta s t r a t . "comm" (comm - check chan fun) s t r a t))
155
156 ; Memoizing V e r i f i c a t i o n
157 (de fn memo - check

159

158 [c o n t r a c t dterm sub - s t r a t blame]
159 (mon (memoize c o n t r a c t) sub - s t r a t (e x t r a c t dterm) blame))
160
161 (de fn memo
162 " memoizer meta - s t r a t e g y , e x c e p t s a r e f to a map and a s t r a t e g y "
163 [s t r a t]
164 (Meta s t r a t . "memo" memo - check s t r a t))
165
166 ; S t a t e C o n t r a c t s
167 (de fn make - c o n t r a c t - s t a t e
168 [s t a r t - s t a t e]
169 (r e f (l i s t s t a r t - s t a t e)))
170
171 (de fn i n ?
172 [c o l l elm]
173 (some #(= elm %) c o l l))
174
175 (de fn t r a n s i t i o n - check
176 [s t a t e - r e f from - s t a t e to - s t a t e]
177 (fn [c o n t r a c t dterm sub - s t r a t blame]
178 (l e t [r e s (mon c o n t r a c t sub - s t r a t (e x t r a c t dterm) blame)]
179 (i f (i n ? (d e r e f s t a t e - r e f) from - s t a t e)
180 (dosync
181 (r e f - s e t s t a t e - r e f
182 (i f (l i s t ? to - s t a t e) to - s t a t e (l i s t to - s t a t e)))
183 r e s)
184 (throw
185 (Excep t i on .
186 (s t r " Program per fo rmed i n v a l i d s t a t e t r a n s i t i o n : \ n"
187 " Cur r en t s t a t e : " (d e r e f s t a t e - r e f)
188 " T r a n s i t i o n : " from - s t a t e " -> " to - s t a t e "\n")))))))
189
190 (de fn t r a n s i t i o n
191 [s t a t e - r e f from - s t a t e to - s t a t e s t r a t]
192 (Meta s t r a t . (s t r " t r a n s i t i o n " from - s t a t e to - s t a t e)
193 (t r a n s i t i o n - check s t a t e - r e f from - s t a t e to - s t a t e)
194 s t r a t))
195
196 (de fn t r a n s i t i o n - as - check
197 [s t a t e - r e f t r a n s i t i o n - f n]
198 (fn [c o n t r a c t dterm sub - s t r a t blame]
199 (l e t [r e s (mon c o n t r a c t sub - s t r a t (e x t r a c t dterm) blame)
200 to - s t a t e (t r a n s i t i o n - f n (d e r e f s t a t e - r e f) r e s)]
201 (i f (not (= to - s t a t e : e r r o r))
202 (dosync
203 (r e f - s e t s t a t e - r e f
204 (i f (l i s t ? to - s t a t e) to - s t a t e (l i s t to - s t a t e)))
205 r e s)
206 (throw
207 (Excep t i on .
208 (s t r " Program per fo rmed i n v a l i d o p e r a t i o n : \ n"
209 " Cur r en t s t a t e : " (d e r e f s t a t e - r e f) "\n")))))))
210
211 (de fn t r a n s i t i o n - as
212 [s t a t e - r e f t r a n s i t i o n - f n s t r a t]
213 (Meta s t r a t . (s t r " t r a n s i t i o n - as ")

160

214 (t r a n s i t i o n - as - check s t a t e - r e f t r a n s i t i o n - f n)
215 s t r a t))
216
217 ;
218 ; ; Cont rac t D e f i n i t i o n s ; ;
219 ;
220
221 (de fn p r e t t y - demunge
222 [f n - o b j e c t]
223 (l e t [dem - fn (m/demunge (s t r fn - o b j e c t))
224 p r e t t y (second (r e - f i n d #" (. ∗ ? \ / . ∗ ?) [\ - \ - |@] . ∗ " dem - fn))]
225 (i f p r e t t y p r e t t y dem - fn)))
226
227 (de fn predc
228 " Bu i l d a p r e d i c a t e c o n t r a c t "
229 [f]
230 (fn [x blame]
231 (i f (f x)
232 x
233 (throw (Excep t i on .
234 (s t r " Cont rac t v i o l a t i o n : " x
235 " v i o l a t e d " f "\n"
236 " Blame : " blame))))))
237
238 (de f anyc (p redc (fn [x] t r u e)))
239
240 (de f natc (p redc (fn [x] (>= x 0))))
241
242 (de fn p a i r c
243 " Bu i l d a p r e d i c a t e c o n t r a c t "
244 [c1 c2 s]
245 (fn [p a i r blame]
246 [(mon c1 s (f i r s t p a i r) blame)
247 (mon c2 s (second p a i r) blame)]))
248
249 (de fn con - r a v e l
250 [a r g s i n s]
251 (i f (empty? i n s)
252 (l i s t)
253 (cons (concat (take 2 a r g s) (l i s t (f i r s t i n s)))
254 (con - r a v e l (drop 2 a r g s) (r e s t i n s)))))
255
256 (de fn func
257 " Bu i l d a f u n c t i o n c o n t r a c t "
258 [& s c s]
259 (fn [f blame]
260 (fn [& i n s]
261 (l e t [l (∗ 2 (count i n s))
262 c l (count s c s)]
263 (i f (not (= (+ 2 l) c l))
264 (throw (Excep t i on . " I n v a l i d number o f arguments f o r c o n t r a c t s ")))
265 (l e t [mon - s e t s (con - r a v e l s c s i n s)
266 p o s t s (drop l s c s)]
267 (mon (f i r s t p o s t s)
268 (second p o s t s)
269 (app l y f

161

270 (map (fn [x]
271 (mon (f i r s t x)
272 (second x)
273 (second (r e s t x))
274 (i n v e r t - blame blame)))
275 mon - s e t s))
276 blame))))))

162

Cameron Swords Curriculum Vitae
cameronswords@gmail.com http://cswords.com

Research Interests

I am a computer scientist studying programming technology for programmatic analysis and performance.
My expertise is in all aspects of programming language implementation and design, particularly for
runtime verification, effectful and concurrent computation, and compiler implementation. My previous
work includes: (1) concurrency-based models of runtime analysis to ensure program correctness; (2)
meta-programming facilities for programming languages, with a focus on hygienic macros; (3) modeling
programmatic effects in semantic models; and (4) exploring logic-based programming mechanisms.

Education

Indiana University, Bloomington, IN 2011–2019
Ph.D. in Computer Science, February 2019
Dissertation: A Unified Characterization of Runtime Verification Systems as Patterns of Communi-
cation.
Advisor: Amr Sabry
Committee: Sam Tobin-Hochstadt, Jeremy Siek, Lawrence S. Moss.

M.S. in Computer Science, March 2016

Oregon Programming Language Summer School 2012

Trinity University, San Antonio, TX 2007–2011
Bachelor of Science in Computer Science (with Honors), May 2011
Thesis: Pocketwatch: A Parallel Language.
Advisor: Maurice Eggen

Employment History

Indiana University, Bloomington, IN 2011–2018
Associate Instructor (with Amr Sabry), Spring 2016–Spring 2017

Graduate Research Assistant (with Amr Sabry), Fall 2012–Spring 2016

Associate Instructor (with Daniel P. Friedman), Spring 2012–Fall 2012

Mozilla, San Francisco, CA Summer 2016
Research Intern on the Rust Programming Language team (with Nick Cameron)

Southwest Research Institute, San Antonio, TX Summer 2011
Graduate Student Intern with the Defense & Intelligence Solutions Division

Trinity University, San Antonio, TX Summer 2009, 2010
Research Assistant (with Mark Lewis)

Publications

Conference & Journal Publications

Cameron Swords, Amr Sabry, and Sam Tobin-Hochstadt. An extended account of contract monitoring
strategies as patterns of communication. Journal of Functional Programming, 28, 2018.

Michael M. Vitousek, Cameron Swords, and Jeremy G. Siek. Big types in little runtime: Open-world
soundness and collaborative blame for gradual type systems. In Proceedings of the 44th ACM SIGPLAN
Symposium on Principles of Programming Languages, New York, NY, USA, 2017. ACM.

1

Cameron Swords, Amr Sabry, and Sam Tobin-Hochstadt. Expressing contract monitors as patterns
of communication. In International Conference on Functional Programming, 2015.

Mark Lewis and Cameron Swords. Lock-graph: A tree-based locking method for parallel collision han-
dling with diverse particle populations. In Proceedings of the International Conference on Parallel and
Distributed Processing Techniques and Applications, volume 11, pages 157–161, 2011.

Workshop Publications

Jason Hemann, Cameron Swords, and Lawrence Moss. Two advances in the implementations of extended
syllogistic logics. In Workshop on Natural Language Processing and Automated Reasoning, 2015.

Cameron Swords and Dan Friedman. rKanren: Guided search in minikanren. In Scheme and Func-
tional Programming Workshop, 2013.

Oleg Kiselyov, Amr Sabry, and Cameron Swords. Extensible effects: An alternative to monad trans-
formers. In Haskell Symposium, 2013.

Theses
A Unified Characterization of Runtime Verification Systems as Patterns of Com-
munication February 2019

Ph.D. dissertation

Pocketwatch: A Parallel Language May 2011
Honors thesis

Selected Talks

Procedural Macros in Rust July 2016
Mozilla Corporation, San Francisco, CA.

Expressing Contract Monitors as Patterns of Communication September 2015
International Conference on Functional Programming (ICFP ’15), Vancouver, BC.

Lightning Talk: JITs for Haskell September 2015
Haskell Implementors Workshop (HIW ’15), Vancouver, BC.

rKanren: Guided search in miniKanren November 2013
Scheme and Functional Programming Workshop, Alexandria, VA.

CUDA Event-Driven Particle Simulations April 2010
National Conferences on Undergraduate Research (NCUR ’10), Missoula, MT.

Software Projects

Pisces github.com/cgswords/dissertation
A software contract library for Clojure with a focus on multi-strategy and meta-strategy contracts, recre-
ating my dissertation work in a real-world programming language.

Preliminary proc_macro Implementation Rust Programming Language
Implemented a preliminary version of procedural macro programming facilities for the Rust program-
ming language, including a token-stream representation of input syntax and meta-programming tools
for syntactic macro writers (i.e., a syntactic quasiquoter). This work was merged into the Rust language
as part of proc_macro crate.

2

Scheme-to-x86_64 Compiler github.com/cgswords/sgc
A nanopass-style, functional compiler written in Scheme, complete with tail-call optimization and run-
time garbage collection.

rKanren github.com/cgswords/rkanren
A uniform-cost search dialect of miniKanren, a declarative, logic programming language embedded in
Scheme.

Teaching

Teaching Assistant, Programming Language Foundations Spring 2017
Graduate course on programming language theory. Taught by Amr Sabry.

Teaching Assistant, Intro to Computer Science (Honors) Fall 2016
Undergraduate course on introductory programming. Taught by Amr Sabry.

Teaching Assistant, Discrete Structures for Computer Science (Honors) Spring 2016
Undergraduate course on discrete mathematics and formal logic. Taught by Amr Sabry. (Unofficial
Position)

Teaching Assistant, Principles of Programming Languages Fall 2012
Graduate course on programming language design. Taught by Daniel P. Friedman. (Unofficial Position)

Teaching Assistant, Principles of Programming Languages Spring 2012
Undergraduate course on programming language design. Taught by Daniel P. Friedman.

Service

External Reviewer for Haskell Symposium 2014, PEPM 2014, COMLAN 2016

External Subreviewer for ICFP 2016, POPL 2017

Organizer, Indiana University PL Colloquium Series 2013–2017

Administrator, Indiana University PL Colloquium Mailing List and Website 2013–2017

Select Graduate Coursework
Programming Language Theory Compiler Design and Implementation
Meta-programming Formal Verification
Theory of Computation Domain Specific Languages
Set Theory Recursion Theory
Software Engineering Operating Systems

3

	List of Figures
	Chapter 1. Introduction
	1.1. Software Contracts
	1.2. Variations on Contract Systems
	1.3. Separating Contract Monitors into their Own Evaluators
	1.4. Unified Contract System
	1.5. General Runtime Verification & Verification Meta-strategies
	1.6. Thesis Statement
	1.7. Previously Published Work

	Chapter 2. Software Contracts and Variations Therein
	2.1. Variations on Verification
	2.2. Eager Verification
	2.3. Semi-Eager Verification
	2.4. Promise-Based Verification
	2.5. Concurrent Verification
	2.6. Verification in Review

	Chapter 3. Uniting Contract Verification Strategies in a Unified Framework
	3.1. Multi-Strategy Monitoring
	3.2. Small Examples of Multi-Strategy Monitors
	3.3. A Unifying Semantics for Contract Verification

	Chapter 4. cs: A Language for Implementing Runtime Verification as Patterns of Communication
	4.1. The Basics of the cs Calculus
	4.2. Language Features
	4.3. Types & Type Safety

	Chapter 5. Contracts as Patterns of Communication
	5.1. Contract Combinators in cs
	5.2. Eager Contract Verification—Interrupting the User Evaluator
	5.3. Semi-Eager Contract Verification—Postponing Contract Verification
	5.4. Promise-based Contract Verification—Concurrent Checking with Synchronization
	5.5. Concurrent Contract Verification—Complete Evaluator Decoupling
	5.6. Finally-Concurrent Contract Verification—Verification Without Synchronization
	5.7. Additional Verification Strategies in cs
	5.8. Mixing Strategies with Contracts in cs

	Chapter 6. Beyond Contracts: Verification Meta-strategies
	6.1. The With Meta-strategy—Performing Additional Operations
	6.2. The Random Meta-strategy—Probabilistic Contract Enforcement
	6.3. The Memoization Meta-strategy—Caching Contract Results
	6.4. The Transition Meta-Strategy—Ensuring State Machines with Verification
	6.5. Additional Contract Meta-strategies
	6.6. Contracts as Generalized Runtime Effects

	Chapter 7. Pisces: An Implementation with Advanced Examples
	7.1. Basic Clojure Operations
	7.2. Implementing the Pisces Library
	7.3. Meta-strategies in Pisces
	7.4. Case Studies: Advanced Examples using Pisces

	Chapter 8. Related Works
	8.1. Software Contracts
	8.2. Contract Metatheory
	8.3. Complete Blame and Contract Monitoring
	8.4. Contract Implementations
	8.5. Runtime Verification and Instrumentation

	Chapter 9. Summary & Future Work
	Bibliography
	Appendix A. Embedding Findler:2002 into cs
	Appendix B. cd: A ACMPurpledelay-less Variant of cs
	Appendix C. The Pisces Source Code

