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Abstract— This paper builds on earlier work that used a
spatial grid for locking to provide physically accurate paral-
lel collision handling. Instead of using a grid, this work uses
a spatial tree. The tree is better able to handle heterogeneous
particle populations. The method was specifically developed
to handle a granular flow impact simulation where one large
body impacts a population of smaller bodies. The large size
of the impactor leads to a breakdown in the grid based
locking strategy because grid cells are uniformly sized and
must be large enough to enclose the largest particle in the
population plus the relative velocity distribution multipled
by a time step. The tree allows the regions that get locked
to scale in size based on local characteristics, making it
possible to handle dramatic size differences. Unfortunately,
it also has more overhead than the grid so using it when it
is not needed can slow simulations down.
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1. Introduction

Parallelizing collisions in a physically accurate way is
inherently challenging. This is because, unlike longer range
forces such as gravity, collisions are temporally sensitive.
The behavior is sensitive to the order of collisions, as
one collision can alter the path of particles to prevent
other collisions or to make them happen at different times.
Fortunately, the short-range nature of collisions means that
over a fixed period of time, one can set bounds on how far
the effect of a particular collision will travel. This range can
be though of as the speed of sound in the medium times the
length of time being considered. This logic leads to spatial
locking where collisions are processed in order, but parallel
processing of future collisions is allowed as long as those
collisions are far enough away from one another (1; 2; 3).

This dependence on temporal ordering is not uncommon
in discrete event simulations, indeed, it is the norm. Sig-
nificant effort has gone into finding ways to parallelize
such systems (4; 5; 6). A common solution to this is to
implement the ability to roll back changes (7; 8; 9). For
a general discrete event simulation that solution typically
allows greater parallelism than trying to keep things together,
but it comes at the expense of memory. For this application,
roll back is not really an option. The storage of the rollback
information would have a computational cost that would
rival what was gained from parallelism. More importantly,

these simulations are often memory constrained. Particle
counts in physical, collisional simulations can get as high
as a few times 108, and for some situations that is the limit
which constrains what can be done. In the case of planetary
rings, a simulation with 10® particles is near the minimum
required for getting decent resolution with a ring that goes all
the way around the planet. Even then it must be a narrow ring
which precludes some types of work. Adding the memory
overhead of storing older states for particles we can roll back
to would further depress the maximum simulation size for a
given cluster configuration.

In our previous work (1), locking was done using a
uniform grid. The grid cells are made large enough that
during one time step, the probability of a particle colliding
with another particle whose center is located two or more
cells away is effectively zero. This works well enough for
the majority of ring simulations. Indeed, for simulations
where the population is fairly homogeneous in size and
spatial distribution and the velocity distribution has a small
dispersion, this method is optimal. For those simulations, the
same grid can be used as the spatial data structure used for
searching potential collision pairs as well, so there is a net
benefit in sharing the data structure.

Such a grid is less ideal for finding collisions when
the particle distribution has heterogeneities. For example,
if there are a small number of significantly larger particles,
if the particles are very non-uniformly distributed in space,
or if there are spatial variations in the velocity distribution.
For these situations, a tree is better as the primary spatial
data structure for finding collisions. We also found, for one
particular simulation, that the grid approach to locking could
be untenable.

Figure 1 shows a granular particle simulation in which a
marble is dropped into a dish of silicon spheres. When this
was first attempted using the grid for locking, the simulation
bogged down to a point where it wasn’t going to finish in a
reasonable period of time. This prompted the development
of the method described here.

2. Methodology

The key goal for the new method was to be flexible
enough to handle the situation shown in fig. 1. Building off a
spatial tree was a natural approach because these simulations
use a tree instead of a grid for collision finding and we could
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Fig. 1
THIS SHOWS A FRAME FROM THE SIMULATION THAT MOTIVATED THIS

WORK. AN INITIAL SIMULATION WAS DONE IN WHICH UNIFORM SMALL
PARTICLES WERE DROPPED AND ALLOWED TO SETTLE IN A DISH. THAT
CONFIGURATION WORKED FINE WITH THE GRID LOCKING. THEN A
SINGLE IMPACTOR WAS ADDED THAT WAS 20 TIMES LARGER IN RADIUS
THAN THE OTHER PARTICLES AND DROP IT INTO THEM. THIS CAUSED
THE GRID LOCKING TO FAIL, AS THE LARGE SIZE AND HIGH VELOCITY
OF THE IMPACTOR LED TO A LARGE GRID SIZE.

reap the benefits of having a mutual data structure for both
purposes. To be competitive with the grid, the method also
needed to be fast. The grid allows O(1) access to the eight
adjacent cells to check if a collision is being processed in
one of them so we can know if it is safe to process a collision
in the current cell. Solutions that run through the tree would
be O(log n), where n is the number of particles, and would
have a higher coefficient due to the overhead of moving
through the tree. The method presented here uses the tree as
the spatial data structure, but it also builds a graph through
the tree that we call the lock-graph, which retains the O(1)
access aspects of the grid and the dynamic and spatially
variable nature of the tree.

The basic idea of this method is that in the spatial tree
certain nodes are labeled as lock-nodes. Only the lock-nodes
are significant in determining if a collision can be processed
or not. The path from the root of the tree to any leaf
(where particles are contained), can contain only a single
lock-node. Each lock-node much be at least as large as the
largest particle plus a multiple of the velocity dispersion for
the particles under that node. The tree knows these values
already as they are used in the collision pair searching
algorithm. It would be simple enough to have a recursive
function that runs through the tree finding the nodes that
should be lock nodes based on the specified size criteria.
However, we also need to know about “adjacent” nodes.
For any given lock node there will be other nodes around
it that are within range and must be searched for collisions.
Simple recursion doesn’t give us that.

To make it so we can quickly find the adjacent nodes, we
need to have a graph where edges connect the lock nodes

in the tree that are adjacent for the purposes of collision
finding. This structure is what we call the lock graph. It
contains all the lock nodes with edges between any lock
nodes that contain particles that could impact one another.
This structure can be built at the same time that lock nodes
are picked using recursion over two arguments. This pseudo-
code shows how it works.

def buildLockGraph (nl:Node,n2:Node) {
if (nl==n2) {

val lock = nl.numParts>=0 ||
nl.size<SCALEx* (nl.maxRad+nl.searchRadius)

if (!lockl) {
buildLockGraph(nl.firstChild, nl.firstChild)
buildLockGraph (nl.firstChild, nl.secondChild)
buildLockGraph (nl.secondChild,nl.secondChild)

}

} else {
val dx = nl.mid.x-n2.mid.x
val dy = nl.mid.y-n2.mid.y
val dz = nl.mid.z-n2.mid.z
val dist = sqgrt (dxxdx+dy*dy+dzxdz)
val searchDist = nl.searchRadius+nl.maxRad+

n2.searchRadius+n2.maxRad
if(dist-0.866* (nl.size+n2.size)<=searchDist) {

val lockl = nl.numParts>=0 ||
nl.size<SCALEx (nl.maxRad+nl.searchRadius)
val lock2 = n2.numParts>=0 ||

n2.size<SCALEx* (n2.maxRad+n2.searchRadius)

if (lockl && lock2) {
addLockEdge (nl,n2)

} else if(lockl) {
buildLockGraph(nl,n2.firstChild)
buildLockGraph(nl, n2.secondChild)

} else if (lock2) {
buildLockGraph(n2,nl.firstChild)
buildLockGraph (n2,nl.secondChild)

} else {
buildLockGraph(nl.firstChild, n2.firstChild)
buildLockGraph(nl.firstChild, n2.secondChild)
buildLockGraph (nl.secondChild, n2.firstChild)
buildLockGraph (nl.secondChild, n2.secondChild)

}

There are two top level cases. The two nodes could be the
same or they could be different. If they are the same, we
only decide if the node should be a lock-node. If it isn’t,
then we need to recurse three times to the different possible
combinations of the two children of the node.

If the nodes aren’t the same, the distance between their
center points is calculated and that is checked against their
sizes and the search distance of the two nodes. If they are
too far apart, the recursion terminates. Otherwise the code
determines if either one is a lock node. If both are, that edge
is added to the graph. If only one is, that one recurses against
both children of the other. If neither is, all four combination
of the children are recursed on.

This function is called using the root of the tree for both nl
and n2. When it is done, all lock nodes have been identified
and all edges have been added. This form of two argument
recursion can have many uses in spatial work when the
objective is to find pairs of entities. One other application
was presented in (10). It can also be nicely parallelized so
that it does not add to sequential overhead in the application.

At this point the lock-graph can be used in much the



same way the grid was used previously. When the processing
begins on a collision, the lock-node for each of the two
particles is set to being locked. To make this efficient, a
map from particles to nodes is made when the graph is built.
When the collision is done, the lock is released. To check if
a particular collision is safe to be processed, the code checks
that node for each of the two particles in the collision and
all the other nodes directly connected to them in the graph.

The check in the pseudocode for whether or not it is a lock
node includes a factor called SCALE. This can be adjusted to
move the lock-nodes up or down in the tree. Moving them up
leads to fewer lock nodes that have more particles in them,
but there are fewer connections between lock nodes. Moving
them down has the opposite effect. Increasing the number
of particles in a lock node can lead to over-locking if the
lock-nodes get too big. However, the fact that the check for
whether a collision is safe or not must run through all the
edges out of a node means that lower connectivity can have
a positive performance impact on one of the most common
operations in the simulation. The impact of this is explored
in the next section.

3. Analysis

The method was implemented in a collisional dynamics
simulation code in C++. This code has been used previously
for modeling of planetary rings (11; 12; 13). It was tested
on two general types of systems, the system for which it
was created shown in fig. 1 and a system using a small
cell in a planetary ring shown in Figure 2. Both simulations
included a bit under 200,000 particles and they were run
through ten time steps to get the timing results. In addition,
each system was run in two configurations called early and
late. The early was the initial conditions and the late was
after the system had evolved to an equilibrium. For the ring
simulation the early is truly uniform with a dynamically
cold particle distribution. The late was after two orbits
when particle self-gravity and collisions had altered the
distribution and particles were beginning to clump a bit. For
the silicon grain simulations, the early stage had a cube of
well spaced particles completely inside the cylinder falling
down to the surface. The late simulation is what is shown
with the particle at rest at the bottom of the cylinder.

To do the time testing we used a server with 4 Quad-
Core AMD Opetron 8350 processors, running at 2.0GHz
processor, giving a total of 16 cores. The C++ code base
was compiled using the x86 Open64 compiler from AMD.
The compile flag were “-Ofast -mso -march=auto -openmp”.
All multithreading was done using OpenMP. The “-apo”
autoparallelization flag for the compiler was not used as
the objective is to test the parallelism coded explicitly into
the simulation. It is worth noting that choice of compiler
can be significant. While the x86 Open64 compiler was
selected under the belief that it would out perform the GNU
C++ compiler, incomplete results from that compiler show
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Fig. 2

THIS FIGURE SHOWS A FRAME FROM THE RING PARTICLE SIMULATION
THAT WAS USED FOR TIMING RESULTS. THIS IS WITHOUT THE MOON.
THE SIMULATIONS WITH A MOON HAD A 20-M PARTICLE PLACED AT

THE ORIGIN.

that things aren’t so clear cut. For some of the situations
presented, the GNU compiler produces slightly faster code.

The results in the tables show what was reported by the
Linux time command. Each simulation was run five times
with the mean and standard deviation being presented.

The first table shows timing results for the ring simulation
shown in fig. 2. This was the situation for which the grid was
originally developed. The particles are fairly homogeneously
spread out and the particle distribution is quite flat. The
timing data here shows that for this system, larger lock-
nodes are generally better and that a SCALE of ~6.0 is
ideal. It isn’t too surprising that even with that scale, the
grid implementation is slightly better.

Table 2 shows the times for the ring simulation when
a moonlet, 10 times larger in radius than the largest other
particles, was dropped into the middle of the simulation.
This setup was a bit artificial because the system was only
advanced 10 steps which isn’t enough time to let smaller
particles settle on the surface of the moonlet, but it does test
the graph with a heterogeneous particle size distribution. The
results for this test were very odd as the graph timing for
the initial conditions was highly variable and none of the
graph runs performed as well as the grid.

A possible explanation for this is shown in Figure 3.
The large particle forces one large lock node in the graph.



[ Scale | Graph Early (s) [ Graph Late (s) ]

1.2 44.4+0.4 58.3£0.9
2.0 44.6 £0.1 57.0£1.0
4.0 42.0£0.1 47.74+0.2
6.0 39.9+0.2 43.74+0.2
8.0 39.2+0.1 43.8+£0.1
Table 1

THIS TABLE SHOWS TIMING RESULTS FROM RING SIMULATIONS WITH A
POPULATION OF PARTICLES WHOSE SIZES WERE PULLED FROM A
DIFFERENTIAL POWER-LAW DISTRIBUTION WITH A SLOPE OF -2.8

SPANNING A FACTOR OF TEN IN RADIUS. TIMES FOR THE GRID BASED
LOCKING WITH THIS SIMULATION WERE 37.1 4+ 0.1 EARLY AND
42.0 £ 0.1 LATE. FOR THE LARGER GRAPH SCALE THE GRAPH WAS
COMPARABLE IN SPEED TO THE GRID, BUT NEVER SUPERIOR.

[ Scale | Graph Early (s) [ Graph Late (s) |

1.2 95.2+5.7 75.3+0.8
2.0 136.4 £ 6.2 75.5+1.2
4.0 177.8 £ 7.2 67.5+0.6
6.0 112.2 +3.0 66.2 +0.7
8.0 212.7+ 7.6 66.5+ 1.1
Table 2

THIS TABLE SHOWS TIMING RESULTS WHEN A MOONLET, 10 TIMES
LARGER IN RADIUS THAN THE LARGEST BACKGROUND PARTICLES, WAS
ADDED TO THE SIMULATION. THE TIMING FOR THE GRID IN THIS
SITUATION WAS 93.0 &£ 2.0 EARLY AND 57.9 &+ 0.3 LATE.

That node has a very high connectivity. If there aren’t
enough collisions happening in nodes that aren’t adjacent
to that large node, the workload will be unbalanced and the
processing will become more sequential. It is worth further
exploration into whether having a more natural particle
configuration or a larger cell would favor the graph more.

We also have time results for the granular flow simulations
that prompted the development of the graph-lock method.
This simulation differs from the ring simulations in another
very significant way, the distribution of particles is distinctly
3-D. Planetary rings are remarkably flat. While the 3-D
aspect of the rings is very significant to the dynamics (14), all
the particles are close to the orbital plane. That is significant
for the grid, which only breaks the simulation region up in
2-D. It would be possible to make a 3-D grid, but memory
overhead quickly becomes a problem with 3-D grids that
have decent spatial resolution, and while the neighbor count
in 2-D is only eight, it goes up to 26 for 3-D, increasing the
overhead of lock checking.

The results without the marble show how different this
system is from the ring simulations. Here, increasing the
scale of the lock nodes has little impact on performance
when the particles are spread out early and slows it down
when they are densely packed after having settled to the
bottom. In addition, while the grid performs roughly the
same speed as the graph for the early system, it is slightly

Fig. 3
THIS IS A PICTORIAL REPRESENTATION OF A LOCK GRAPH WHEN THERE

IS A SINGLE LARGE PARTICLE. THE SIZE OF THE NODES ROUGHLY
REPRESENTS THE AREA IT COVERS. THE NODE WITH THE LARGE
PARTICLE HAS A MUCH HIGHER CONNECTIVITY AND IT IS POSSIBLE
THAT CHECKS FOR ITS LOCK COULD ACTUALLY SLOW THINGS DOWN IF
THERE AREN’T ENOUGH COLLISIONS HAPPENING AWAY FROM IT TO
KEEP THE LOAD BALANCED.

[ Scale | Graph Early (s) [ Graph Late (s) |

1.2 21.0+0.6 860 £ 39
2.0 20.6 £0.3 859 + 30
4.0 20.7£0.8 913 £ 40
6.0 20.5£0.7 936 + 22
8.0 19.3+0.5 968 + 33
Table 3

THESE ARE TIMING RESULTS FOR THE SILICON GRAIN SIMULATIONS
WITHOUT THE DROPPING MARBLE. THE GRID BASED LOCK TIMING FOR
THESE SIMULATIONS WERE 19.5 4= 0.5 EARLY AND 1004 + 38 LATE.

slower later on. In all cases though, the 30 bounds overlap.

Adding the marble is where the graph should in theory
stand out. Again, the performance is fairly flat with graph
scale except for the largest size which caused it to run
significantly slower. The grid performed similarly to the
largest scale for the early time. It is interesting to note that
in this situation there isn’t much of a difference between the
early and late simulations using the graph. One result that
seems a bit unusual is that the late setup runs faster with
the marble than it did without. This implies that having the
marble located up high actually changes the morphology of



[ Scale | Graph Early (s) [ Graph Late (s) ]

1.2 647 £ 37 667 £ 50
2.0 668 + 41 663 + 39
4.0 686 £ 52 705 £ 24
6.0 667 + 46 646 + 13
8.0 2529 4+ 1323 2780 + 1185
Table 4

THESE ARE TIMING RESULTS FOR THE SILICON GRAIN SIMULATIONS
WITH THE DROPPING MARBLE. THE GRID BASED LOCK TIMING FOR
THESE SIMULATIONS WERE 2654 £ 1153 EARLY AND >> 150, 000 LATE.

the graph as a whole in such a way that it allows greater
parallelism. Lastly, with the marble at the late time it wasn’t
possible for us to get good time bounds on the grid method.
After a few days of running it still hadn’t completed the
first time step which allows us to give the limit in the table
caption.

4. Conclusions

The lock-graph method of locking parallel threads adds
another option to the toolkit of those working in spatially ori-
ented discrete event simulations. While specifically designed
for collisional simulations, it could be used to good effect
in any discrete event application where events have a spatial
distribution and exhibit locality. Unlike rollback methods,
this does not require significant memory overhead and can
be used for simulations that are often memory constrained.
The use of two-argument recursion to built the lock-graph
means that it has a worse case performance of O(N log N),
the same was what would be required to built or maintain
the tree data structure.

As is so often the case in simulation, the lock-graph is no
silver bullet. There are trade-offs and some situations where
it is not the ideal approach. For systems that are naturally flat
and mostly homogeneous, a grid will work better. However,
the use of a kD-tree for the lock-graph means that it will
efficiently scale to higher dimensions where a grid would
become infeasible and the ability to handle 3-D systems
that exhibit significant heterogeneity makes it appropriate
for systems where the grid-based approach breaks down.
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