
rKanren
Guided Search in miniKanren

Cameron Swords
Indiana University, USA
cswords@indiana.edu

Daniel P. Friedman
Indiana University, USA

dfried@indiana.edu

Abstract
Traditional relational programming languages often provide
a fixed, simple search strategy: Prolog implementations na-
tively provide depth-first search to find answers (though
other strategies are often supported) while most miniKanren
implementations perform search using a breadth-first ap-
proach. In the field of Artificial Intelligence, both of these
strategies are often discarded for best-first strategies, in-
cluding A∗ Search, Beam Search, Dijkstra’s Algorithm, and
Uniform Cost Search.

We focus on uniform-cost search, presenting a frame-
work for guided search in the miniKanren relational lan-
guage embedded in Scheme. This paper revises the tradi-
tional miniKanren lazy search implementation, imposing a
partial ordering on the search space exploration in order to
find answers in a programmer-specified order.

Keywords relational programming, search, minikanren,
logic programming

1. Introduction
Most traditional relational programming languages adopt a
fixed search strategy to use when exploring solution search
spaces—the entire domain of possible solutions that must be
searched through. These search strategies are taken from the
early days of Artificial Intelligence research, and different
search strategies have been adopted for languages including
Prolog and miniKanren.

The Prolog programming language allows programmers
to perform relational programming for theorem proving and
artificial intelligence [4, 8, 9]. Prolog has traditionally pro-
vided users with a depth-first search [4, 20], wherein each
search branch is explored until termination before any other

[Copyright notice will appear here once ’preprint’ option is removed.]

branch is explored [19]. This approach works most effec-
tively in finite search spaces with deep answers, as infinite
search spaces have search branches that never terminate.

Conversely, miniKanren, a relational programming lan-
guage based on monadic research into nodeterminism and
embedded in Scheme [5, 6, 11, 15], uses a search that most
closely resembles breadth-first search, wherein a single step
is taken down each search branch in turn [19]. This approach
will find shallow answers quickly, even in infinite search
spaces, but may take more time to find answers that live
deeper in the space.

In the field of Artificial Intelligence, both of these strate-
gies are often discarded for either Iterative-Deepening Depth-
First Search [16] or Best-First Search [10, 12, 18, 19].
Iterative-Deepening Depth-First Search performs a depth-
first search with a limit on the depth—any branch that
exceeds that limit is abandoned. The search is run from the
beginning repeatedly, increasing the depth limit with each
iteration until the required number of answers is found.

Best-first search associates each path in the tree with a
cost and the search always explores the lowest-ranked search
path [13, 17, 19]. The path cost is the sum of the distance
from the starting node and a cost function or heuristic esti-
mate of the distance from the current state to the goal, de-
termined by examining the current state with a programmer-
provided evaluation function. This search has the dual ad-
vantages of finding answers earlier in large search spaces and
finding more “ideal” answers in problems where multiple
answers exist.

In this paper, we present rKanren, an extension of miniKan-
ren for performing guided search using uniform-cost search
operation that allows programmers to inform the search
space exploration. This implementation revisits the tradi-
tional miniKanren stream-merging procedures [11], im-
posing a partial ordering on the miniKanren search space
exploration in order to find answers in a different order.

By allowing users to rank particular search branches, the
miniKanren search mechanism can be guided toward an-
swers deeper in the search space without risking the common
non-termination problems associated with depth-first search.

1 2014/1/9

MiniKanren’s basic usage and implementation are pre-
sented in The Reasoned Schemer and a number of publica-
tions in the literature [2, 5–7, 11]. We assume that the reader
is familiar with the language and its basic implementation.

The rest of the paper proceeds as follows:

• Section 2 introduces the condr language form in miniKan-
ren, demonstrating the basic search guidance system in
the context of small examples and full recursion.

• Section 3 discusses our changes to miniKanren’s internal
implementation (including the introduction of stream pri-
ority ranks and rank-sensitivity modifications to mplus,
bind, and case-inf) to facilitate this new search strat-
egy while preserving the old search forms (including
conde).

• Section 4 explores advanced examples and applications
of condr, using the new form to address undesirable
behavior when synthesizing complex answers.

• Section 5 wraps up and describes potential future works.

2. Deeper Results in miniKanren
In traditional AI research, the logical progression of breadth-
first and depth-first search are the techniques of iterated-
deepening depth-first search and best-first search [19], which
utilizes per-node weights in the search space to guide explo-
ration in directions that the programmer deems more likely
to yield an answer.

The most-utilized search technique in classic miniKan-
ren is conde, which performs search space exploration in a
breadth-first style.
> (run∗ (q)

(conde ((≡ q #t)) ((≡ q #f))))

(#t #f)

Using conde causes the goals listed to be explored in
a first-in, first-out style, exploring the first goal of the first
clause, then the first goal of the second clause, and so on.
While miniKanren produces a set of answers in theory,
there are many situations where programmers would like
to change the order they receive their answers in practice:
> (run∗ (q)

(conde ((≡ q #f)) ((≡ q #t))))

(#f #t)

Depending on clause ordering to change the answer order
is less than ideal: programmers must carefully modify pro-
grams to affect the order of the answer stream, and the results
may be unexpected. One alternative is to provide a new form,
condr, which associates a number value with each clause in
order to guide the search:
> (run∗ (q)

(condr

(2 (≡ q #f))
(1 (≡ q #t))))

(#t #f)

2.1 Weighted Search
While the searches are associated with a rank, there are
a number of other considerations when designing guided
searches. The most important is that more goals mean more
work, and the work done during a computation contributes
to the cost, and thus the computation’s rank [13]. Thus if a
search path is ranked lower but does more work, the cost
increase may cause the answer to occur later.
> (run∗ (q)

(fresh (a b)
(condr

(2 (≡ q #f))
(1 (≡ q `(,a ,b))

(≡ a #t)
(≡ b #t)))))

(#f (#t #t))

This additional computation cost may be dealt with by
increasing the rank of other branches: each goal contributes
one more point of work, so we must increase the first goal to
rank 4 in order to produce the expected behavior once again.
> (run∗ (q)

(fresh (a b)
(condr

(4 (≡ q #f))
(1 (≡ q `(,a ,b))

(≡ a #t)
(≡ b #t)))))

((#t #t) #f)

The condr form, like conde, is itself a proper goal in the
miniKanren system, so it may be used inside of conde. Here,
conde interleaves exploration of the two condr clauses, and
thus the lower-ranked branches of each are performed before
the higher-ranked branches.
> (run∗ (q)

(fresh (a b)
(≡ q `(,a ,b))
(conde

((condr

(2 (≡ a 'a) (≡ b 'b))
(1 (≡ a 'b) (≡ b 'a))))

((condr

(2 (≡ a 'a) (≡ b 'a))
(1 (≡ a 'b) (≡ b 'b)))))))

((b a) (b b) (a b) (a a))

2.2 Recursive Weights
The original motivation for developing condr was to find
specific answers earlier. Large search trees may be generated
using recursive functions, but previous miniKanren imple-
mentations have been unable to return answers found recur-
sively earlier than ground answers listed in the function’s
body.

2 2014/1/9

Ground answers are answers found at the end of search
branches, and grounding out indicates arriving at the end of
a search path and finding an answer. Consider the following
function, written with conde, and associated call. It has two
recursive options and a single clause (the first one) that
grounds the search path.

(define recur-e
(λ (e)
(fresh (a b)
(conde

((≡ e '(x)))
((≡ e `(b . ,a)) (recur-e a))
((≡ e `(a . ,b)) (recur-e b))))))

> (run 5 (q) (recur-e q))
((x) (b x) (a x) (b b x) (a b x))

The conde clause that grounds out first—in this case, the
first clause—is the first answer, and each subsequent answer
is produced in order of the conde clauses. If we would like
these answers in a different order, we may use condr to rank
our desired answer order.

(define recur-r
(λ (e)
(fresh (a b)
(condr

(10 (≡ e '(x)))
(4 (≡ e `(b . ,a)) (recur-r a))
(2 (≡ e `(a . ,b)) (recur-r b))))))

> (run 5 (q) (recur-r q))
((x) (a x) (b x) (a a x) (b a x))

This result may be somewhat unexpected: though the first
clause is ranked higher, and thus should occur later than the
other clauses, it is still produced as the first answer. Luckily,
the intuition here is straightforward: the other two clauses
must eventually ground out in a recursive call (via the first
clause), and ranks are cumulative. As a result, the answer
(x) has rank 10 while the answer (a x) has rank 12 and
the answer (b x) has rank 141.

If we would like complex answers earlier, we must
change the cost of grounding during later recursive calls.
This is a simple fix: each rank is a full Scheme expression
that evaluates to a natural number, so we may use an extra
parameter to keep track of our recursive depth and use the
information to change the grounding cost:

(define recur-r-n
(λ (e n)
(fresh (a b)
(condr

((if (< n 1) 10 1)
(≡ e '(x)))
(4 (≡ e `(b . ,a))

(recur-r-n a (add1 n)))
(2 (≡ e `(a . ,b))

(recur-r-n b (add1 n)))))))

> (run 5 (q) (recur-r-n q 0))
((a x) (b x) (a a x) (x) (a b x))

1 The actual ranks are larger because each step contributes to the rank (as
previously discussed), but the intuition here should be sufficient for program
reasoning.

(condr

(〈a-exp〉 〈g-exp〉 〈g-exp〉∗)
(〈a-exp〉 〈g-exp〉 〈g-exp〉∗)∗)

Figure 1. Formal syntax for condr

Our recursion tracks the depth, and after the first two
steps the grounding cost is reduced from 10 to 1, causing the
answers (a x), (b x), and (a a x) each to have a total
cost lower than 10. This technique allows users to explore
the deep answers in the search space before considering the
shallow answers.

2.3 Formal Syntax and Behavior
In the condr form, each clause of goals is associated with
a Scheme expression that evaluates to some kind of natural
number2. These numbers, referred to as priorities or ranks,
are then used to guide the search space exploration by always
exploring the numerically lowest-ranked path.

The formal syntax is given in Fig. 1. Here, the first
〈a-exp〉 of each set of clauses is any Scheme expression that
evaluates to a natural number and every subsequent 〈g-exp〉
evaluates to a miniKanren goal (as with conde).

The behavior of condr is modeled after the best-first
search technique, where the traditional heuristic approach of
A∗ search has been discarded in favor of simple Scheme ex-
pressions that evaluate to numeric values, producing classic
uniform-cost search. Uniform-cost search still requires ter-
minating search trees: consider revising recur-r by ranking
the first clause with one hundred: 100 recursive steps would
need to be taken before any ground answers were produced,
and yet the answer order would be identical to the one
presented.

In this way, the condr form still performs a complete
search: unlike the conda and condu forms that provide
users some control over search paths but ultimately dis-
cards certain answers, condr will find every answer in finite
search spaces. Furthermore, condr strictly subsumes conde:
conde’s behavior may be reproduced by replacing each rank
in condr with the number 0.

3. Implementation
Changing the implicit search strategy of miniKanren re-
quires modifying a number of internal functions that are of-
ten kept far from the user, including the stream composition
structures and goal exploration mechanisms. We perform
these changes in several stages:

• We convert streams and substitutions to records which
have associated “ranks” in order to evaluate which should
be dealt with next. We also introduce additional operators
to perform rank operations.

2 It is possible to use negative numbers, but this may lead to difficulty when
reasoning about result order.

3 2014/1/9

• We rewrite the mplus operators to always invoke the
branch with the lowest rank.

• We modify the internal case-inf macro to systemati-
cally count each step a search path takes to ensure control
is properly handed off.

• We rewrite the custom lambda forms, conde, run, and
fresh, and implement condr.

A thorough explanation of the initial miniKanren imple-
mentation may be found in Alvis, et. al. [2].

3.1 Recording the Ranks
The first step toward guided search is to associate each
stream and substitution (which is treated as a stream of
length one) with a rank by converting each into a record
that contains the original contents and an additional field for
rank:

(define-record stream (rank proc))
(define-record subst (rank alist diseq))

There are also a number of helpers provided in the
appendix to make subsequent changes easier (including
invoke, get-rank, incr-rank, and more). We primarily
use these helpers for inspecting or modifying the records’
ranks, but invoke extracts and invokes a stream’s procedure.

3.2 Rebalancing the Trampoline
In miniKanren, the search is ordered by suspending each
search path as a thunk, a function of no arguments [14],
which is internally treated as a stream of answers [1]. These
streams are combined by a binary trampoline—a trampo-
line [3] that alternates between invoking two thunks.

By nesting these trampolines, miniKanren produces a
lazy, binary tree that represents streams and substitutions
as nodes. The classic miniKanren search traverses this tree
in a breadth-first search strategy. In the original miniKan-
ren implementation, mplus performs this search, culling up
answers returned during invocation. In order to guide the
search, we must reform this tree structure to build a lazy,
binary min heap. Each time we invoke a node of the heap, the
trampoline mechanism examines the rank associated with
the two sub-nodes and invokes the node with the lowest
rank at each step. In the case of ties, the last-invoked stream
relinquishes control.

The implementation presented in Fig. 2 is simpleforward:
any time streams are involved, their ranks are compared and
the lower one is chosen as the next one to invoke. The entire
stream is given the lower rank when constructing the stream
to be returned (because that is the rank of the path to be
expanded when the outer thunk is invoked). The expanded
form, mplus∗, performs a similar operation for an entire
list of possible streams, choosing the appropriate rank and
building the appropriate answer.

(define mplus
(λ (a-inf f)
(case-inf a-inf
(() (invoke f))
((f')
(let ((f'-rank (get-rank f'))

(f-rank (get-rank f)))
(if (< f'-rank f-rank)
(thunk f'-rank (mplus (invoke f') f))
(thunk f-rank (mplus (invoke f) f')))))

((a) (choice a f))
((a f')
(choice
a
(let ((f'-rank (get-rank f'))

(f-rank (get-rank f)))
(if (< f'-rank f-rank)
(λf () f'-rank (mplus (invoke f') f))
(λf () f-rank

(mplus (invoke f) f')))))))))

(define-syntax mplus∗

(syntax-rules ()
((e) e)
((e e∗ ...)
(let ((min-rank (apply min (map get-rank `(,e∗ ...))))

(e-rank (get-rank e)))
(if (< e-rank min-rank)
(mplus e

(λf () min-rank (mplus∗ e∗ ...)))
(mplus (λf () min-rank (mplus∗ e∗ ...))

(λf () e-rank e)))))))

Figure 2. A rank-sensitive implementation of mplus.

We must also update bind to make use of get-rank and
invoke:

(define bind
(λ (a-inf g)
(case-inf a-inf
(() (mzero))
((f) (thunk (get-rank f) (bind (invoke f) g)))
((a) (g a))
((a f)
(mplus (g a)

(λf () (get-rank f)
(bind (invoke f) g)))))))

3.3 Rigid Rank Increase
Next, we must ensure that every time a step is taken, the
appropriate rank is increased. In this instance, we are in luck:
every goal step is performed using the case-inf macro,
so we need only modify it to ensure that every step will
increase the rank of the appropriate stream. In each case, we
increment the rank of whatever stream (or answer) would be
returned via incr-rank (defined in the appendix), ensuring
that the next time it is seen by mplus it will indicate that it
has done additional work.

4 2014/1/9

(define-syntax case-inf
(syntax-rules ()
((e (() e0) ((f') e1) ((a') e2) ((a f) e3))
(let ((a-inf e))
(cond
((not a-inf) (incr-rank e0))
((stream? a-inf)
(let ((f' a-inf)) (incr-rank e1)))
((not (and (pair? a-inf)

(stream? (cdr a-inf))))
(let ((a' a-inf)) (incr-rank e2)))
(else (let ((a (car a-inf)) (f (cdr a-inf)))

(incr-rank e3))))))))

3.4 Ranked Revelry
After performing these modifications, we must revisit the λf
and thunk forms of the initial implementation: streams must
now be associated with ranks, and these macros build the
streams. We revise them as follows:

(define-syntax λf
(syntax-rules ()
((() r e) (make-stream r (λ () e)))))

(define-syntax thunk
(syntax-rules ()
((r e) (make-stream r (λf () e)))))

Now we have incorporated ranks through the miniKanren
implementation, and we may express condr:

(define-syntax condr

(syntax-rules ()
(((r0 g0 g ...) (r1 g1 g' ...) ...)
(λg (s)
(thunk (subst-rank s)
(let ((s (subst-incr-rank s)))
(mplus∗

(bind∗

(g0 (subst-add-rank s r0)) g ...)
(bind∗

(g1 (subst-add-rank s r1)) g' ...)
...)))))))

The condr macro culls up each new rank (r0 , r1 , and so
forth) and adds each individually to the rank of the substitu-
tion before passing the now-properly-ranked version into the
appropriate bind∗ form. The thunk being built will dispatch
to mplus∗ when invoked, returning a stream of the lowest
rank.

3.5 Wrapping Up
There are a few last pieces of bookkeeping: we must update
the run macro to reflect this change, seeding the initial
λf with rank 0. We also need to modify the fresh macro
to produce a rank for its body, which we take from the
substitution passed in:

(define-syntax fresh
(syntax-rules ()
(((x ...) g0 g ...)
(λg (s)
(thunk (subst-rank s)
(let ((x (var 'x)) ...)
(bind∗ (g0 s) g ...)))))))

Finally, we must rewrite conde to correctly interact with
these threaded rank values. The implementation is almost
identical to condr, but we treat each clause as if it had an
implicit rank of 0:

(define-syntax conde

(syntax-rules ()
(((g0 g ...) (g1 g' ...) ...)
(λg (s)
(thunk (subst-rank s)
(let ((s (subst-incr-rank s)))
(mplus∗

(bind∗ (g0 s) g ...)
(bind∗ (g1 s) g' ...) ...)))))))

4. Delving Deeper
The original motivation for controlling miniKanren’s search
order was to find “interesting” answers quickly: when open-
ended miniKanren programs are run, they easily produce
simplistic answers and must perform much larger searches
to find complex ones.

One such example is a type inferencer—a program that
takes a program as input and produces the program’s type as
output, ensuring it is well-typed in the process. In miniKan-
ren, it is straightforward to encode a basic type inferencer for
the lambda calculus; such an inferencer is presented below.
This inferencer uses tagged application (along with tagged
variables and integers) to derive the type of expressions.

(define `o
(λ (Γ e t)
(fresh (e1 e2 e3 t1 t2)
(conde

((≡ e `(intc ,e1)) (≡ t 'int))
((≡ e `(+ ,e1 ,e2)) (≡ t 'int)
(`o Γ e1 'int)
(`o Γ e2 'int))
((≡ e `(var ,e1)) (lookupo Γ e1 t))
((≡ e `(λ (,e1) ,e2))
(≡ t `(→ ,t1 ,t2))
(`o `((,e1 . ,t1) . ,Γ) e2 t2))
((≡ e `(app ,e1 ,e2))
(`o Γ e1`(→ ,t1 ,t))
(`o Γ e2 t1))))))

(define lookupo

(λ (Γ x t)
(fresh (rest type y)
(conde

((≡ `((,x . ,t) . ,rest) Γ))
((≡ `((,y . ,type) . ,rest) Γ)
(6≡ x y)
(lookupo rest x t))))))

The type inferencer encodes the basic lambda calculus
typing rules, using a type environment Γ (represented as
an association list) to derive expression types. The lookupo

procedure performs look-ups in the association list, and we
use the disequality constraint 6≡ to ensure we recur only
when x may not be unified with y.

5 2014/1/9

Using this inferencer and a pair of fresh variables, we may
ask miniKanren to generate 4 well-typed expressions:

> (run 4 (q)
(fresh (e t) (≡ q `(,e : ,t)) (`o '() e t)))

(((intc .0) : int)
((λ (.0) (intc .1)) : (→ .2 int))
((λ (.0) (var .0)) : (→ .1 .1))
((+ (intc .0) (intc .1)) : int))

These expressions are incredibly basic, however: the
breadth-first approach of conde finds the shallow answers
first, thus producing the simplest expressions first. Using
our new condr, we may change which answers are found
first, producing more complex answers first.

A revised implementation, given below, uses a recursive
depth counter, as described in §2.2. In our implementation,
the application and lambda expressions are given low cost
while variables and integers decrease in cost during deeper
recursive calls.

(define `r
(λ (Γ e t n)
(let ((n (add1 n)))
(fresh (e1 e2 e3 t1 t2)
(condr

((if (< n 3) 30 1)
(≡ e `(intc ,e1))
(≡ t 'int))

((if (< n 3) 30 1)
(≡ e `(+ ,e1 ,e2))
(≡ t 'int)
(`r Γ e1 'int n)
(`r Γ e2 'int n))

((if (< n 4) 30 15)
(≡ e `(var ,e1))
(lookupo Γ e1 t))

(4 (≡ e `(λ (,e1) ,e2))
(≡ t `(→ ,t1 ,t2))
(`r `((,e1 . ,t1) . ,Γ) e2 t2n))

(2 (≡ e `(app ,e1 ,e2))
(`r Γ e1`(→ ,t1 ,t) n)
(`r Γ e2 t1 n)))))))

We once again ask miniKanren to generate 4 well-typed
expressions:

> (run 4 (q)
(fresh (g e t) (≡ q `(,e : ,t))

(`r '() e t 0)))
(((λ (.0) (λ (.1) (intc .2)))
: (→ .3 (→ .4 int)))
((λ (.0) (λ (.1) (λ (.2) (intc .3))))
: (→ .4 (→ .5 (→ .6 int))))
((λ (.0) (app (λ (.1) (intc .2)) (intc .3)))
: (→ .4 int))
((app (λ (.0) (intc .1)) (λ (.2) (intc .3)))
: int))

The cost-based search guidance leads miniKanren to
delve deeper into the search space before grounding out, and
the result is a list of answers with increased complexity. By
actively seeking out a certain shape of answers, we are able
to explore the more interesting areas of the search space.

5. Conclusion and Future Work
The field of search strategies is well developed, and Prolog
has long had many ways to encode various search strate-
gies [8, 20]. Growing miniKanren’s language features to
provide a wider range of applications is important to make it
an effective, competitive relational language, and providing
a new search strategy that encompasses the current, widely-
used search mechanism should prove invaluable in future
development. Using this new search strategy, it is possible to
concretely predict the order of clause evaluation in miniKan-
ren and, as a result, better manage the expected outcome of
programs.

Future work includes:

• Encoding depth-first search using condr. Each clause
will have to relate to a global counter, ensuring that
branches are assigned lowering priorities in the order
they are discovered, meaning that the most recently-
discovered search path is always the one explored next.

• Developing straightforward syntax that enables program-
mers to define full heuristic functions in place of numeric
ranks, providing the heuristic function with sufficient in-
formation (such as the current substitution and recursion
rank) to be admissible, recovering full A∗ search.

• Fine-tuning clause rank choices, producing a short guide
to help users understand what numeric values are ideal in
various situations.

Acknowledgments
The early work on miniKanren would not have been suc-
cessful without the insights of Mitchell Wand and Steve
Ganz, and the langue would not exist without the brilliant
insights of Will Byrd during its development. Oleg Kiselyov
made major improvement to every aspect of miniKanren,
and we are grateful to Chung-Chieh Shan for his work on
the book’s implementation of miniKanren and his contin-
ued advice when modifying the underlying, subtle magic
in miniKanren’s implementation that lead to this work. We
would also like to thank our reviewrs, the PL Wonks organi-
zation at Indiana University, and Jason Hemann for extentive
critique and feedback.

References
[1] Harold Abelson and Gerald Jay Sussman. Structure and

Interpretation of Computer Programs - 2nd Edition (MIT
Electrical Engineering and Computer Science). The MIT
Press, 1996.

[2] Claire E. Alvis, Jeremiah J. Willcock, Kyle M. Carter,
William E. Byrd, and Daniel P. Friedman. ckanren: minikan-
ren with constraints. In Proceedings of the 2011 Scheme and
Functional Programming Workshop, 2011.

[3] Henry G. Baker. Cons should not cons its arguments, part ii:
Cheney on the m.t.a., 1994.

6 2014/1/9

[4] Ivan Bratko. Prolog Programming for Artificial Intelligence.
Addison Wesley, 2000.

[5] William E. Byrd. Relational programming in miniKan-
ren: techniques, applications, and implementations. PhD
thesis, Indiana University, Indianapolis, IN, USA, 2009.
AAI3380156.

[6] William E. Byrd and Daniel P. Friedman. From variadic
functions to variadic relations: A minikanren perspective. In
Proceedings of the 2006 Scheme and Functional Program-
ming Workshop, pages 105–117, 2006.

[7] William E. Byrd, Eric Holk, and Daniel P. Friedman. minikan-
ren, live and untagged - quine generation via relational inter-
preters. In Proceedings of the 2012 Scheme and Functional
Programming Workshop, 2012.

[8] William F. Clocksin and Christopher S. Mellish. Program-
ming in Prolog: Using the ISO Standard. Springer, 2003.

[9] Alain Colmerauer and Philippe Roussel. The birth of prolog.
In The second ACM SIGPLAN conference on History of
programming languages, HOPL-II, pages 37–52, New York,
NY, USA, 1993. ACM.

[10] E. W. Dijkstra. A note on two problems in connexion with
graphs. Numerische Mathematik, 1(1):269–271, December
1959.

[11] Daniel P. Friedman, William E. Byrd, and Oleg Kiselyov. The
Reasoned Schemer. The MIT Press, 2005.

[12] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis
for the heuristic determination of minimum cost paths. IEEE
Transactions on Systems, Science, and Cybernetics, SSC-
4(2):100–107, 1968.

[13] P.E. Hart, N.J. Nilsson, and B. Raphael. A formal basis for
the heuristic determination of minimum cost paths. Systems
Science and Cybernetics, IEEE Transactions on, 4(2):100 –
107, july 1968.

[14] P. Z. Ingerman. Thunks: a way of compiling procedure
statements with some comments on procedure declarations.
Commun. ACM, 4(1):55–58, January 1961.

[15] Oleg Kiselyov, Chung-chieh Shan, Daniel P. Friedman, and
Amr Sabry. Backtracking, interleaving, and terminating
monad transformers: (functional pearl). SIGPLAN Not.,
40(9):192–203, September 2005.

[16] Richard E. Korf. Depth-first iterative-deepening: An optimal
admissible tree search. Artificial Intelligence, 27:97–109,
1985.

[17] Allen Newell and Herbert A. Simon. Computer science
as empirical inquiry: symbols and search. Commun. ACM,
19(3):113–126, March 1976.

[18] Judea Pearl. Heuristics: Intelligent Search Strategies for
Computer Problem Solving (The Addison-Wesley series in
artificial intelligence). Addison-Wesley Pub (Sd), 1984.

[19] Stuart Russell and Peter Norvig. Artificial Intelligence: A
Modern Approach (3rd Edition). Prentice Hall, 2009.

[20] Ehud Sterling and Leon Shapiro. The Art of Prolog, Sec-
ond Edition: Advanced Programming Techniques (Logic Pro-
gramming). The MIT Press, 1994.

Helper Functions
There are a number of simple helper functions used through-
out the implementation and provided here. Most of the defi-
nitions are wrappers around record constructors and getters,
and we use them for syntactic sugar.

The definitions get-rank and incr-rank both deal with
their input in a style similar to case-inf: the former simply
extracts the rank (or returns -1 in the case of failure, ensur-
ing immediate failure) and the latter increments the rank on
whatever it is handed (if such an operation is possible).

The function lookup-s and definition empty-a have
been updated to reflect the record type of substitutions, and
the invoke function has been provided to ease the loss of
raw thunks in the implementation.

(define get-rank
(λ (a-inf)
(cond
((stream? a-inf) (stream-rank a-inf))
((subst? a-inf) (subst-rank a-inf))
(else -1))))

(define incr-rank
(λ (a-inf)
(cond
((stream? a-inf) (stream-incr-rank a-inf))
((subst? a-inf) (subst-incr-rank a-inf))
((pair? a-inf)
(cons
(incr-rank (car a-inf))
(incr-rank (cdr a-inf))))

(else a-inf))))

(define subst-add-rank
(λ (s r)
(make-subst
(+ (subst-rank s) r)
(subst-alist s)
(subst-diseq s))))

(define subst-incr-rank
(λ (s)
(make-subst
(add1 (subst-rank s))
(subst-alist s)
(subst-diseq s))))

(define stream-incr-rank
(λ (stream)
(make-stream
(add1 (stream-rank stream))
(stream-proc stream))))

(define empty-a (make-subst 0 '() '()))

(define lookup-s
(λ (u S)
(assq u (subst-alist S))))

(define invoke
(λ (stream)
((stream-proc stream))))

7 2014/1/9

