Two Advances in the Implementations of
Extended Syllogistic Logics

Jason Hemann, Cameron Swords, and Lawrence S. Moss
{jhemann, cswords, lmoss}@indiana.edu

Indiana University, Bloomington

Abstract. Natural logics are of interest to both logicians and members
of the natural-language research community. They provide a means of
precisely reasoning about aspects of natural language in a way that is
computationally tractable, and akin to the process by which humans
reason in ordinary language. This paper takes as a target a reasonably-
small logic which support reasoning about “All”; “Some”, negated nouns,
relative clauses, and the “more X than Y” operation of cardinality com-
parison. The importance of this logic is that it goes beyond first-order
logic, hence one cannot use off-the-shelf tools. This paper contains two
contributions to the implementation of this logic and others. First, it
mentions an implementation in Sage. The program builds proofs and
counter-models by one and the same algorithm. That is, the failure to
build a proof provides the data for a counter-model in an automatic
way. This abstract does not go into details on the algorithm, but a talk
on this includes a demo of the Sage program. Second, in a very dif-
ferent direction, we mention declarative implementations of a different
logic in this family, done in the miniKanren language. These implemen-
tations provide users with automated proof search, theorem generation,
and proof checking, and are designed to facilitate reuse in implementing
other natural logics.

1 Introduction

Logical syllogisms—arguments with deductive reasoning—have been the object
of study since at least Aristotle. More recently, these logical syllogisms become
the core of a series of natural logics [14], which aim to mirror the style of deduc-
tions people employ in everyday reasoning.

Though well-studied, there has been little work toward developing automated
tools for proof searches in natural logics. In the applications work that has been
undertaken [22,19,18,17,4,12,27,25], the implementations themselves have not
been the object of study; implementers have been content to use imperative
implementations, or rely on SAT solvers or tools like Prover9 and Sage. These
can provide powerful, performant tools for working with these logics. But, they
somewhat obscure the direct nature of the reasoning employed. A high-level,
declarative implementation of these logics, on the other hand, preserves and

Proceedings of the Joint LNMR/NLPAR Workshop at LPNMR, 2015 1

highlights the direct reasoning of these deduction systems in their implementa-
tions. This declarative approach also provides to be extensible and well-suited
for rapid prototyping.

We utilize the declarative language miniKanren to demonstrate this encoding
process for several logics, including a new logic for cardinality comparison of
atoms, from their proof-tree derivation rules. For each logic, we produce for
each a single tool that can be used for proof instantiation, proof derivation, and
automated theorem search from a list of premises. The full code may be found
at http://github.com/jasonhemann/natlogic. This paper proceeds as follows:

— Section 2 discusses the logic with cardinality comparison, and it shows ex-
amples of the Sage implementation.

— Section 3 serves as a brief primer to the miniKanren language and the cKan-
ren implementation, embedded in Racket. It also describes the basic strategy
to encode natural logics as miniKanren programs, including premise rep-
resentation, proof construction, and user invocation. We demonstrate this
approach by encoding A, the logic of ‘All”, in miniKanren.

— Section 4 describes a miniKanren implementation of a logic with cardinality
comparison.

— Section 5 discusses related work and concludes and describes potential future
work.

2 A Logic for Cardinality Comparison

We begin by introducing a logic for cardinality comparison on top of the basic
syllogistic logic, taken from [20]. Consider the following argument:

There are more students than professors at the party
There are more professors than deans at the party (1)
There are more students than deans at the party

The conclusion follows from the premises. The intuition is that the transitivity
of more ... than ... is a basic feature of human reasoning, on a par with the
transitivity of all ... are ... that we see in the syllogistic rule (BARBARA). We
do not wish to formalize the argument in (1) by translating it into another logic
(for example, logical systems which incorporate natural numbers); the point is
that the general logical principles of the target systems are likely to be much
more complicated than necessary for this task.

Let us widen the discussion a little. In addition to more ... than ..., we also
find in language the weaker assertion there are at least as many ... as Here
is another argument which we take to be valid:

There are at least as many rabbits as deer
There are more deer than goats (2)
There are more rabbits than goats

Proceedings of the Joint LNMR/NLPAR Workshop at LPNMR, 2015 2

o) (xow W (BARBARA)
ggz Z; (soME) 383 (CONVERSION)
a(p,;)(p7:§n,q (DARI) W (CARD-MIX)
3(p,p3)(q’3q>)(q,p) (cARD-3) jzg’:g (MORE-AT LEAST)
20 209 (om0 20D o s
Hz(pyq)q&?(q,p) x)
Bow B
SO 2D
9 (ons-av) o) (axy
izgjp (Camp-any) 3(1’71’3)(;;)(‘1"1) o)
az(p;;)(:;(%q) (HALF) 3>(p731)>)(p73q2)(q7f1) (STRICT HALF)
3% (.) j:p(,q;)q) EZIINNN

Fig.1. Rules for the cardinality logic. The rules for a smaller system, which lacks
complemented variables, are found above the line.

Proceedings of the Joint LNMR/NLPAR Workshop at LPNMR, 2015 3

And here is an argument of a different character:

All violas are stringed instruments
There are at least as many violas as stringed instruments (3)
All stringed instruments are violas

A moment’s thought will convince the reader that this is valid, provided that
we are speaking of finite situations. In this paper we restrict attention to finite
universes, in order to obtain a logical system that we think of greater “human
interest” than the weaker logic that would result if we allowed infinite structures
and thus denied the validity of (3).

Finally, we make our logical language more expressive by allowing comple-
mentation of nouns. Here are some examples:

There are at least as many x as y
There are at least as many non-y as non-x

There are at least as many x as non-x
There are at least as many y as non-y
There are at least as many x as non-y

The first example just above shows an inference whose soundness depends on
the fact that we are looking at a finite universe. The second uses a property of
“half”: if the universe has N objects, the premises tell us that the xs are at least
% in number. The ys number at least %, and so the non-ys number at most %
Thus the xs number at least as much as the non-ys. The fact that we can do all
of this with cardinality comparison and complement makes this work interesting
and non-trivial.

The main result in [20] is a sound and complete logical system whose sen-
tences are of the form All x are y, Some x are y, There are at least as many z as y,
and There are more x than y. Moreover, th logic does not involve translating the
cardinality assertions into any other language. The proof system is sound and
strongly complete: for a finite set I' U {¢} of sentences, ¢ is true in every model
of I if and only if there is a derivation of ¢ from I'. This paper does not discuss

the completeness result at all but rather presents the implementation.

Formal System. Figure 1 presents the rules of the system in natural-deduction
format. The logic has sentences of the following forms:

~ V(p, q) read as “all p are ¢”,

— 3(p, q) read as “Some p are ¢”,

— 32(p, q) read as “there are at least as many p as ¢”,
— 3% (p, q) read as “there are more p than ¢”

There are no connectives, and the overline symbol (p) on the variables is for
set complement. This logic induces a notion of models and precise definitions of
model satisfaction such that we may define what it means for a (finite) set of
sentences to semantically imply another sentence.

Proceedings of the Joint LNMR/NLPAR Workshop at LPNMR, 2015 4

Implementation. On the other hand, this paper is about the implementation.
The logical consequence has been implemented in Sage, and the implementation
is currently available on https://cloud.sagemath. com. (That is, it can be shared.)
The consequence relation may be computed in polynomial time. This should be a
little surprising, since the cardinality comparison machinery cannot be expressed
in first-order logic.

Example 1. One may enter:

assumptions= ['All non-a are b',
'There are more c than non-b',
'There are more non-c than non-b',
'There are at least as many non-d as d',
'There are at least as many c as non-c',
'There are at least as many non-d as non-a'l
conclusion = 'All a are non-c'
follows(assumptions,conclusion)

The last line indicates that we are asking if a given conclusion follows from
a given list of six assumptions. Then the program returns, telling us that the
conclusion does not follow. And it produces a counter-model, a model where all
of the assumptions are true and the conclusion false.

Here is a counter-model.
We take the universe of the model to be {0, 1, 2, 3, 4, 5}

noun semantics complement

a {2, 3} {0, 1, 4, 5}

b {e, 1, 4, 5} {2, 3}

C {0, 2, 3} {1, 4, 5}

d { {0, 1, 2, 3, 4, 5}

So it gives the semantics of a, b, ¢, and d as subsets of {0,...,5}. Notice that
the assumptions are true in the model, but the conclusion is false. In the cases
that the conclusion did follow, the system would output a proof in our system.

Example 2. Here is an example of a derivation found by our implementation.
We ask whether the putative conclusion below really follows:

All non-x are x
Some non-y are z
There are more x than y

Proceedings of the Joint LNMR/NLPAR Workshop at LPNMR, 2015 5

The program returns the following result when we provide it the assumptions
listed above, asking for a profe that there are more z than y:

1 All non-x are X Assumption

2 All y are X One 1

3 All non-x are X Assumption

4 A1l non-y are X One 3

5 Some non-y are z Assumption

6 Some non-y are non-y Some 5

7 Some non-y are X Darii 4 6
8 Some X are non-y Conversion 7
9 There are more x than vy More 2 8

While the proof is displayed as a list rather than a tree, it is merely a cosmetic
difference.

The advantage of working with a syllogistic system formulated using ex falso
quodlibet rather than reductio ad absurdum is that the proof search and the
counter-model generation are closely related. In a sense, they are both results of
the same algorithm. Moreover, the algorithm is efficient. That is, the question
of whether a sentence follows from a list of assumptions is in polynomial time.

Unfortunately, the implementation is obscuring: it is over 1500 lines of Sage
and ultimately relies on iteratively constructing all possible derivations from a
given set of assumptions. Moreover, this implementation is customized toward
dealing with the logic of relative cardinalities. These features are hardly ideal
when experimenting with a new logic.

To this end, we now turn our focus to miniKanren, a declarative program-
ming language embedded in Racket, to demonstrate how it can be used to de-
velop proof searches for natural logics. Unlike our Sage work, the miniKanren
implementation of this cardinality logic is concise, clear, and extensible. It is,
however, unable to generate counter-models and takes super-polynomial time:
the miniKanren approach is good for experimentation, but has sub-par perfor-
mance.

3 Implementations in miniKanren

Our previous section discussed a Sage implementation of a single large logic
with distinct advantages in disadvantages. In its favor, the algorithm works in
polynomial time and includes counter-model generation along with proof search.
Unfortunately, the algorithm is highly specialized toward the logics and difficult
to explain (and thus eschewed in our presentation). In a different direction, we
present a generic way to build declarative implementations of syllogistic logics.
The key point is the genericity of the work: it is straightforward to construct
and experiment with proof searches for these logics in a declarative language. On
the other hand, these constructions are not as closely related to counter-model
search and the resultant encodings are less efficient than custom-constructed
algorithms.

Proceedings of the Joint LNMR/NLPAR Workshop at LPNMR, 2015 6

3.1 miniKanren: A Brief Introduction

miniKanren is a family of embedded, domain-specific relational (logic) pro-
gramming languages [3,5,6,2,10,9]. Implementations come with a variety of con-
straints, the foremost of which is ==, an equality constraint implemented with
syntactic, first order unification. For this presentation, we use cKanren, an im-
plementation of miniKanren embedded in Racket [7]. The cKanren implementa-
tion provides programmers with access to the entirety of the host language when
writing miniKanren programs' and the ability to define their own constraints.

The run Interface. The primary interface to miniKanren is run, which takes
the mazimal number of answers desired, an “output” variable—a variable with
respect to which the answer should be presented—and a sequence of goal ex-
pressions to achieve. Consider the following miniKanren program execution:

> (run 1 (q) (== q 3))
'(3)

Here, the 1 indicates we request at most one answer for the variable q. The
only constraint is the equality of q with 3. The output is always presented as a
list of results; this is the list contains only one result for g, the value 3. Consider
this second execution:

> (run 1 (q) (== 3 3))
'(_.0)

The list of results again contains only one element, this time _.0. The final
substitution for this program has no information regarding q, it is a fresh variable.
In the presentation of the answer, distinct fresh variables are written _.n, where
n is an index beginning at 0.

Getting fresh Variables. It is often useful to introduce auxiliary logic variables
as a part of writing a miniKanren program. In the example below, we wish to
assert the query variable is a pair; we introduce new variables a and d and use
them in a constraint:

> (run 1 (q) (fresh (a b) (==q "(,a . ,b))))
((_.0 . _.1))

The fresh operator takes a list of identifiers and a sequence of goal expres-
sions over which new variables are scoped. In this case, they are scoped over
a constraint equating q with a pair whose first element is the variable a and
whose second is the variable b. We rely on the host language’s term construc-
tors to build miniKanren terms, destructuring must be performed with ==. New
variables are lexically scoped, so inner bindings shadows outer ones.

! Except vectors, which are used in the implementation.

Proceedings of the Joint LNMR/NLPAR Workshop at LPNMR, 2015 7

Using conde for Non-deterministic Computation. The conde operator implements
a complete search (whose details are unimportant here) that allows us to simulate
a form of nondeterministic choice. It takes any number of clauses (lists of goal
expressions) and operates as though each clause were attempted independently.

> (run 3 (q) (conde
((fresh (a b) (==q “(,a . ,b))))
((==q 6))))

(6 (_.0 . _.1))

We request 3 results, but receive only two: one from each conde clause.
miniKanren interleaves the search for results, and we are in general not guaran-
teed to receive the results in the order of their conde clauses.

Disequality Constraints. The miniKanren operator =/= implements disequality
constraints. Placing a disequality constraint on two terms already identical in
the current substitution causes failure, and if u and v are under a disequality
constraint, then a substitution extension that forces u and v to be syntactically
identical will also cause failure. Like the substitution, disequality constraints are
carried as part of the state and are indicated in the output:

> (run 1 (q) (=/=q 3))
"((_.0 (=/= ((_.0 3)))))

The variable g still has no binding in the ultimate substitution, and so it is
again presented as _.0, but we also mandate that _.0 not be 3. Our disequality
constraints, like the dif/2 of various Prologs, fail only when their arguments are
identical relative to the current substitution.

User-defined Constraints. We demonstrate an example of a user-defined cKanren
constraint below. We provide a name, and specify its criteria for satisfaction and
its interactions with other constraints. As part of the implementations we provide
a suite of pre-built constraints for defining these and other natural logics.

The un-atom constraint mandates that the term be a unary atom, which
for our purposes means a plural noun (e.g. “logicians”). We represent them as
symbols, and we require they not overlap with binary atoms (transitive verbs).

(define-attribute un-atom
#:satisfied-when symbol?
#:incompatible-attributes (number bin-literal bin-atom))

Adding constraints for atoms, literals, negated literals, etc., makes the result-
ing answers more legible and also groups together multiple answers by collapsing
the search space.

Proceedings of the Joint LNMR/NLPAR Workshop at LPNMR, 2015 8

3.2 Putting Things Together

A miniKanren program attempts to satisfy a number of goals in a given state,
which either succeed, returning a stream of one or more achieving states, or fail,
yielding an empty stream. Because cKanren is embedded in Racket, miniKanren
programmers have access to the entirety of Racket when writing miniKanren pro-
grams. As a result, relations can be defined globally and then invoked elsewhere,
as in the following example:

> (define (membero x 1)
(fresh (a d)
(==1"(,a . ,d))
(conde
((==x a))
((=/= x a) (membero x d)))))

We globally define the binary relation membero, which holds when x is an
elements of a list 1. In the program below, we demand q be such a list containing
'x, and we request three such elements.

> (run 3 (q) (membero 'x q))

"((x . _.0)
((_.0 x « _.1) (=/= ((_.0 x))))
(L0 a1 x . _.2) (=/= ((_.0 x)) ((L.1 x)))))

Furthermore, we can use Racket’s macro system to extend miniKanren with
additional syntactic operations, such as matche, a pattern matcher that will per-
form automatic fresh variable creation [13]. For example, consider the following
two definitions of relational append:

(define (appendo 1s1l 1s2 lout) (define (appendo lsl 1s2 lout)
(conde (matche 1s1

((== 1s1 '()) ()

(== 1s2 lout)) (== 1s2 lout))

((fresh (a d r) ((,a . ,d)
(== 1s1 "(,a . ,d)) (fresh (r)
(== lout “(,a . ,r)) (== lout “(,a . ,r))
(appendo d 1s2 r))))) (appendo d 1s2 r)))))

The left one creates a number of fresh variables and performs unification
against 1s1 at each step. The right one performs the same operations with the
pattern matching tool matche, dispatching on the shape of 1s1. This approach
allows us to avoid creating a number of additional variables and elide the unifi-
cations against 1s1 in the program?. This style of match-and-dispatch will prove
invaluable in rapidly constructing logical proof search.

2 These equations and fresh variables are created during macro expansion.

Proceedings of the Joint LNMR/NLPAR Workshop at LPNMR, 2015 9

© 0 N o G A W N e

[
o

o
-

3.3 A System for Logical Encoding

With this basic understanding of natural logics and miniKanren, we now proceed
with encoding natural logics in a generic and extensible way. We begin with A,
the logic of “All” relations [17,19,22,8], to demonstrate the general encoding
process. A uses three judgement rules: environmental lookup, (AXIOM), and
(BARBARA) from Figure 1. We use I" to represent the set of premises.

These rules indicate that every object, or unary atom, p, is reflexively self-
contained, and the containment relation is transitive. To encode these rules in
miniKanren, we must build a relation that takes as arguments a theorem ¢ to
prove, some environment of premises, I', and, because we are writing a relation,
some proof tree output proof. The resultant procedure, presented in Figure 2,
uses miniKanren’s ==, conde, matche, and fresh as well as the aforementioned
parts of the host language.

(define (A @ T proof)

(matche o
[(v ,a ,a) (== ¢ proof)] ;; Axiom
[,x (membero x I') (== proof “(,x in-T))] ;; Lookup
[(¥ ,n ,q) ;; Barbara

(fresh (p priml proofl prim2 proof2)
== '((,proofl ,proof2) => ,¢) proof)
(== priml “(V ,n ,p))
(== prim2 “(¥ ,p ,q))
(A priml [proofl)
(A prim2 T proof2))1))

Fig. 2. A miniKanren implementation for .A.

Our implementation operates over not-quite-English: like McAllester and Gi-
van [15], we find it convenient to encode the premises provided as lists. We encode
“All” sentences as (V p q) instead of McAllester and Givan’s (A1l p gq) structure:
Racket supports unicode so we can more closely match the format of the logical
rules.

This procedure is the entire encoding of 4. We begin by matching against
the input ¢ and proceeding with three possibilities (one for each rule):

— The first, at line 3, asks if ¢ will unify with (v ,a ,a)—if we are stating that
“All @ are a.” In this case, the proof follows trivially (by (AX10M)), and thus
we unify the statement with the proof tree output.

— The second, at line 4, matches generically against any ¢ and then checks if
that ¢ is a member of T. If it is, we unify the proof tree with a list denoting
the entailment.

— The third, on lines 6-11, encodes the transitivity rule (BARBARA) of A. We
introduce five fresh variables:

Proceedings of the Joint LNMR/NLPAR Workshop at LPNMR, 2015 10

- p, the intermediary atom in the term
- priml and prim2, which represent (v ,n ,p) and (V ,p ,q) respectively
- proofl and proof2, which indicate the proof terms for (v ,n ,p) and
(V ,p ,q) respectively
Finally, we invoke A to recursively build proofs for (v ,n ,p) and (V ,p ,q),
passing in the appropriate proof variables in each case.

4 Cardinality Logic in miniKanren

With these tools in mind, we implement the cardinality object from Figure 1 in
miniKanren. The first half (above the line in Figure 1) is given in Figure 3.

Similar to the preceding examples, the Racket function card implements a
miniKanren relation that describes when that relationship holds between its
inputs, and each matche clause of the card relation corresponds to a rule of
Figure 1.

For larger logics such card, the repetition inherent in specifying the rules of
the logic may become tedious: each two-premise recursion mirrors our implemen-
tation of (BARBARA) in Figure 2, and the one-premise rules follow similarly. We
use Racket’s macro system to once again simplify our task, creating two addi-
tional syntactic forms that construct the appropriate miniKanren terms. These
new syntactic forms, single-prim-term and double-prim-term in Figure 3, take
the logic’s name, the environment, the term(s) that is required to hold in order
for ¢ to hold, and any auxillary variables required, and use them to construct
the fresh variable creation, unifications, and recursions necessary to implement
the rule. For example, consider our equivalent implementations of (BARBARA)
side-by-side:

[(V ,n ,q) ;; Barbara [(¥, n, q) ;; Barbara
(fresh (p priml proofl prim2 proof2) (double-prim-term
(== “((,proofl ,proof2) => ,¢) proof) card proof ¢ I
(== priml (Y ,n ,p)) (Y ,n ,p)
(== prim2 “(V¥ ,p ,q)) (Vv ,p ,q)
(A priml I proofl) p)l

(A prim2 T proof2))]

Using these syntactic abstractions, our program is reduced to a series of
pattern-matching clauses whose the left-hand sides are the translations of the
conclusions of a judgment rule, and whose right-hand sides are invocations of
single-prim—term or double-prim-term, encoding the antecedent or antecedents.
This direct correspondence between the logical rules and the implementation
facilitates rapid prototyping and quick experimentation when working with nat-
ural logics.

5 Conclusions and Next Steps

Interest in the history of syllogistic logics motivated the development of a great
variety of tools (e.g., Glashof [11]). In particular, the work in Prolog has focused

Proceedings of the Joint LNMR/NLPAR Workshop at LPNMR, 2015 11

(define-syntax double-prim-term
(syntax-rules ()

[(_ logic proof ¢ I' el e2 vars ...)

(fresh (vars ... priml prim2 proofl proof2)
== “((,proofl ,proof2) => ,¢) proof)
(== priml el)
(== prim2 e2)
(logic priml [proofl)
(logic prim2 T proof2))1))

(define-syntax single-prim-term
(syntax-rules ()
[(_ logic proof ¢ I' el vars ...)
(fresh (vars ... priml proofl)
(== " ((,proofl) => ,9) proof)
(== priml el)
(logic priml I proofl))]))

(define (card ¢ I proof)
(matche ¢

[(V ,a ,a) (== @ proof)] ;; Axiom
[(v, n, q)
(double-prim-term card proof ¢ *(V ,n ,p) “(V ,p ,q) p)] ;; Barbara
(3 ,p,p) ;; 13
(single-prim-term card proof ¢ I “(3 ,p ,q) q)]
[(3 ,p ,q9) ;; Conversion
(single-prim-term card proof ¢ I (3 ,q ,p))]
[((3 ,p ,q) ;; Darii
(double-prim-term card proof ¢ I (3 ,p ,n) “(V ,n ,q) n)]
[(¥ ,q ,p) ;; Card-Mix
(double-prim-term card proof ¢ I “(V ,p ,q) (3= ,p ,q))]
[(3= ,q ,p) ;; Subset-Size
(single-prim-term card proof ¢ I “(V ,p ,q))]
[(3= ,n ,q) ;; Card-Trans
(double-prim—term card proof ¢ I (3= ,n ,p) (3= ,p ,q) p)l
[(3 ,9 ,9) ;; Card-E
(double-prim-term card proof ¢ I (3 ,p ,p) (3= ,q ,p) p)]
[(3= ,p ,q) ;; More-At-Last
(single-prim-term card proof ¢ I “(3> ,p ,q))]
[(3> ,n ,q) ;; More-Left
(double-prim-term card proof ¢ I “(3> ,n ,p) (3= ,p ,q) p)l
[(3> ,n ,q) ;; More-Right
(double-prim—term card proof ¢ I (3= ,n ,p) (3> ,p ,q) p)l
[,x (membero x ') (== proof ‘(,x in-I))] ;; Lookup
[Lx ;3 X
(double-prim—term card proof ¢ I “(3= ,p ,q) (3= ,q ,p) p 9)]))

Fig. 3. miniKanren implementation of the positive portion of the cardinality logic in
Figure 1.

Proceedings of the Joint LNMR/NLPAR Workshop at LPNMR, 2015 12

on natural language processing and the classical syllogistic logics (typically no
further than ST) [23,16,26,22,19,18,4,12,27,25]. There are a variety of such re-
sults, and it would be difficult to thoroughly catalog all of these systems here.

Our work with Sage shows that it is possible to do proof search and counter-
model generation at the same time. The key point is that reductio ad absurdum
is a derived rule, not a basic feature of the system. This is what is behind our
polynomial-time algorithm.

The relational nature of miniKanren facilitates proof verification and proof
search in the same implementation, and the generic style of implementation
allows us to freely explore new extensions to the syntax and proof theory with
little to no additional overhead. By default, miniKanren relies on a kind of
breadth-first search strategy. Modifying these implementations, using techniques
pioneered in rKanren [24], will allow the user to more finely tune the direction of
the proof search. Additionally, future improvements in cKanren’s set constraint
architecture will likely enable an increase in both performance and clarity of our
implementations.

But the most important next step in this line of work is to connect with the
tableau system in [1] (based on [21]). Abzianidze’s paper shows that computa-
tional systems based on natural logics can be combined with CCG parsers and
other NLP tools in order to scale up work in this area. Indeed, he succeeds in
handling RTE-like data. Nevertheless, his approach is based on tableaux, and
ours is based on the complementary technique of formal proofs. So connecting
the two approaches is the most important task on the road toward using natural
logic in NLP.

References

1. Lasha Abzianidze. A tableau prover for natural logic and language. In Proceedings
of the 2015 Conference on Empirical Methods in Natural Language Processing
(EMNLP). ACL, 2015.

2. Claire E Alvis, Jeremiah J Willcock, Kyle M Carter, William E Byrd, and Daniel P
Friedman. cKanren: miniKanren with constraints. Scheme and Functional Pro-
gramming, 2011.

3. William E. Bird. minikanren.org. http://minikanren.org/. Accessed 1/18/2014.

4. Patrick Blackburn and Johan Bos. Representation and Inference for Natural Lan-
guage: A First Course in Computational Semantics (Studies in Computational
Linguistics). Center for the Study of Language and Information, 2005.

5. William E Byrd. Relational programming in miniKanren: techniques, applications,
and implementations. PhD thesis, Indiana University, 2009.

6. William E Byrd, Eric Holk, and Daniel P Friedman. minikanren, live and untagged.
Scheme and Functional Programming.

7. Matthew Flatt and PLT. Reference: Racket. Technical Report PLT-TR-~2010-1,
PLT Design Inc., 2010. http://racket-lang.org/tri1/.

8. Nissim Francez and Roy Dyckhoff. Proof-theoretic semantics for a fragment of
natural language. Linguistics and Philosophy, 33(6):447—-477, 2011.

9. Daniel P. Friedman, William E. Byrd, and Oleg Kiselyov. The Reasoned Schemer.
The MIT Press, July 2005.

Proceedings of the Joint LNMR/NLPAR Workshop at LPNMR, 2015 13

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Daniel P. Friedman and Oleg Kiselyov. A declarative application logic program-
ming system, 2005.

Klaus Glashof. Computational aristotelian term logic, 2004. see
http://webappb.rrz.uni-hamburg.de/syllogism/aristotelianlogic/.

Nikolay Ivanov and Dimiter Vakarelov. A system of relational syllogistic incor-
porating full boolean reasoning. Journal of Logic, Language, and Information,
21(4):433-459, 2012.

Andrew W. Keep, Michael D. Adams, Lindsey Kuper, William E. Byrd, and
Daniel P. Friedman. A pattern matcher for miniKanren or how to get into trou-
ble with CPS macros. In Scheme ’09: Proceedings of the 2009 Scheme and Func-
tional Programming Workshop, number CPSLO-CSC-09-03 in California Polytech-
nic State University Technical Report, pages 37-45, 2009.

George Lakoff. Linguistics and natural logic. Synthese, 22:151-271, 1970.

David A. McAllester and Robert Givan. Natural language syntax and first-order
inference. Artificial Intelligence, 56:1-20, 1992.

M McCord. Using slots and modifiers in logic grammars for natural language.
Artificial Intelligence, 18(3):327-367, May 1982.

Lawrence S. Moss. Completeness theorems for syllogistic fragments. In F. Hamm
and S. Kepser, editors, Logics for Linguistic Structures, pages 143-173. Mouton de
Gruyter, 2008.

Lawrence S. Moss. Syllogistic logic with complements. In Games, Norms and
Reasons: Proceedings of the Second Indian Conference on Logic and its Applications,
page 19 pp. Springer Synthese Library Series, Mumbai, 2010.

Lawrence S. Moss. Notes on natural logics. unpublished ms., Indiana University,
2013.

Lawrence S. Moss. Syllogistic logic with cardinality comparisons. In Katalin
Bimbo, editor, J. Michael Dunn on Information Based Logics, Outstanding Con-
tributions to Logic. Springer-Verlag, to appear.

Reinhard Muskens. An analytic tableau system for natural logic. In Maria Aloni,
Harald Bastiaanse, Tikitu de Jager, and Katrin Schulz, editors, Logic, Language
and Meaning, volume 6042 of Lecture Notes in Computer Science, pages 104—113.
Springer Berlin Heidelberg, 2010.

Tan Pratt-Hartmann and Lawrence S. Moss. Logics for the relational syllogistic.
Review of Symbolic Logic, 2(4):647-683, 20009.

John F. Sowa. Conceptual graphs: Online course in knowledge representation using
conceptual graphs. http://cg.huminf.aau.dk/index.html. Accessed 1/18/2014.
Cameron Swords and Daniel Friedman. rKanren: Guided search in miniKanren.
Scheme and Functional Programming, 2013.

Jan van Eijck. Natural logic for natural language. In Logic, Language, and Com-
putation, volume 4363 of LNAI pages 216—230. Springer-Verlag, 2007.

Adrian Walker. Knowledge Systems and Prolog: A Logical Approach to Expert
Systems and Natural Language Processing. Addison-Wesley, 1987.

Peter Yule and Buccleuch Place. A Prolog implementation of the method of Euler
circles for syllogistic reasoning, 1996.

Proceedings of the Joint LNMR/NLPAR Workshop at LPNMR, 2015 14

